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Abstract. There is pressing need for the use of a rapid and reliable data-driven prediction scheme for materials development and optimization. It can drastically speed up the
process of assessing key control variables for materials properties, avoiding the needs of scanning the entire design space with costly experimental measurements and
computationally intensive simulations. However, complexity of data generation, model building, and validation procedures for the learned-model approaches could pose a major
obstacle, making them less accessible from the materials science and engineering community.

In this work, we showcase the latest Schrodinger developments in computerized algorithms for automated generation and ranking of predictive regression models, which is readily
available for the design of new chemistry in molecular space. The methodology is demonstrated with large-scale virtual screening of a design space for thermally activated delayed
fluorescence (TADF) materials, catalytic activity prediction for Ziegler-Natta catalysts, and selectivity prediction for the Tsuji reaction. The automated data-driven predictive scheme
provides unbiased measures to quickly assess the key design rules for a wide variety of applications, which could significantly lower the barrier towards large-scale virtual screening
for developing novel materials solutions.

Fingerprint-based QSPR for Example: TADF discovery Examples: homogeneous catalysis
Interactive designs o | | o |
Bi ¢ . dictive descriotors 1 AutoQSAR model built using 113 TADF molecules with known AutoQSAR was used to determine the applicability of machine
'nary TIRGETpTInts as predictive descriptors [1] . AE g learning technigues to the design of transition metal catalyst
- Assembled binary strings solely based on 2D descriptors . 80% Train 20% Test Two systems studied:
] tDe:\ddrltlc;lng%prtln;S]:c fmgerﬁ)lrmt"?g scl:heme widely  The 113 TADF “parents” broken into fragments and fragments
_I?S el an VZ' se . ?r =>ma r(;u_) ek():_u N sp?(;e were recombine via chemically viable enumeration scheme Metallocene-catalyzed olefin polymerization: turnover
- 10pOI0gy and chemistty zpped in binary strings * 58,110 “children” were produced frequency prediction
 Best QSAR model was used on children
O Q « Structures with predicted AEs; < 0.05 eV were subjected to QM The catalyst activity is inversely proportional to the reaction barrier
~~ = ..010...100.......110.......... 111...001... (B3LYP/6-31G* OPT and single-points averaged over B3LYP/6- (and proportional to all side/deactivation reactions):
P () YA / 31G* TDDFT and M06-2X/6-31G* TDDFT) _R _
, - - >
Kernel-based partial least square (KPLS) regression to push Singlet-triplet gap [eV] AutoQSAR model built using 30 experimentally known catalysts [4]
QSAR beyond black-box model [2] 1.2 ' ' ' w '
Example: QSAR model for optoelectronic properties Lor ) - kpls_linear 255
KPLS regression model for 200+ compounds with dendritic | .
fingerprint = 80% Train 20% Test 100000
2 R2 = 0.8895 . o
. s Std. Dev. = 0.0628 o000y 80% Train 20% Test
£ RMSE = 0.0626 i R® 0.8829
0.8 — < Q2 o 08237 -_qg i 4 RMSE 8644
_ KPLS Factors: 3 . .’ Std. Dev.: 9490
T o6 ’ > ‘ . Q2: 0.8865
: < oo’ ° 2 KPLS factors
E 04 - e o Training Set 20000_.. 3 S0 Activity in: kg PE/(mol
g _ %0 0.2 0.4 0.6 0.8 ° o Testoet & ' Zr.h.[Et])
g 02 . . . R2=0.82 with 5 KPLS factors Activity (observed) — Y=X 0
E . 20% random test set e o Training Set
g oo A Qzavg:().65 —20000, 20000 20000 60000 soooo  1]° © TestSet
g . . ctivity (observe - =X
E | | | | | | | | » ~4k of 58K children predicted to have a AEs; < 0.05 eV Activity {observed ’
opreleclection Reorganization Fneroy €9 TDDFT-predicted AEg; = 0.10 eV: Palladium-catalyzed asymmetric decarboxylative alkylation
B3LYP/6-31G* 75% (>2,900) reaction: selectivity of the Tsuji reaction

MO06-2X/6-31G* 5% (>150)
Average 8% (>300)

» 18 structures are known TADF molecules 1. ligand (6.25 mol%)
Pd2(dba)3 (2.5 mol%)
] <\o 5 O\/\ >
0 T 2. Grubbs Il (3 mol%) <\
‘ ‘ ‘ ‘ ° methyl acrylate (10 equiv) ©

» Selectivity is determined by the ligand on Pd

8 00 O Model Visualization

| e sensitivity of the predicted ¥ value to the presence of each atom. Double
click a structure to analyze in detail.

KPLS factors: |5 .IEI ™ Shadow effect Sort by | Original Order 3

Structure Observed Predicted = Model Set

o
1 f 0.188 | 0.217 test
“X
CP 836 935

w5 DMAC-BP
: {% AutoQSAR model built using experimentally known catalysts
% AE 1 derived from the following ligand [5]:
ST EL
3 ‘v 0.178 | 0.200 tast .
oo Ae.preq = 0.204 Experimental 0.07 eV 508 nm
-3 Computed 0.008 eV 519 nm
[ Help_| [ Close | )
PhoP I\II\)
Motivation for averaging over B3LYP and M06-2X: ° g
« B3LYP tends to underestimate AE¢; t-Bu
Automated QSPR - MO06-2X tends to overestimate AEg;
« Averaging: less false negative or false positive results
Follows best-practices QSPR methods for model building [3]: 85 kpls_linear_13
[
Feature [ . 7\ Continuous Y | | | | | | | | S I 30|
i - caledlate \  Selecton prormetve ol B3LYP/6-31G* - I MOB-2X/6-31G* = . -
< +P5trUCt:rfsf.t >—> > + Categorical Y . 10 | . o
opery o , Fingerprints “Er | '
Descriptors \_ Y, . 0s L = 75 =
@ .
Test Finge:prints St e ol ? ,:' T m— _48 ® 80% Tl‘aln, 20% TeSt
ructures Ingle Model IV, ! n 0 D ® 2-
< Struct >_>\ — Or s g R2: 0.8434
Consensus XM, : ol ;; ® RMSE: 2.97
< N > Report |1 “ | = . o Std. Dev.: 441
oaels > |=— Train/Test Learning oo 1 ool . . < 65}
A 4 — Splits Methods ° A:]- KPLS fa(():/tor
< 02 00 0.2 02 08 08 10 12 %202 00 o0z 04 06 o8 10 12 14 CtIVIt In. 7o€€
RP < lumtec exp (eV) lumtec exp (eV) y
LR/ > < Bayes, > s | 60
Rank, Sort, Cap m @ MLR ™ 12 | | | : | | — 55l e o 1rainisng Set
KPLS < ' ' ' ' e e TestSet
etc. Lo average S >> °0 o 0 > — oy =
: : Activity (observed) y=X

0.8 |

0e |

Automating the building, validation and deployment of single or

5171

consensus models: References
« Descriptor generation (from 497 topological descriptors and 4 [1] @) J. Duan, S.L. Dixon, J.F. Lowrie, W. Sherman, J. Molec. Graph. Model. 29,
binary fingerprints) ol 157 (2010). b) M. Sastry, J.F. Lowrie, S.L. Dixon, W. Sherman, J. Chem. Inf. Model.

50, 771 (2010).

Feature selection [2] Y. An, W. Sherman, and S.L. Dixon, J. Chem. Inf. Model. 53, 2312 (2013).

02 b

* Model gener§t|0n | T Y mecem v [3] S.L. Dixon, J. Duan, E. Smith, C.D. Von Bargen, W. Sherman, and M.P.
« Cross-validation over multiple test sets Repasky, Future Med. Chem. 8, 1825 (2016).
. Scoring to rank models with respect to accuracy [4] A. J. van Reenen, Recent Advances in Metallocene Catalyzed Polymerization of

Olefins and other Monomers, lecture prepared for the 2" annual UNESCO training
school, March 29-31, 1999.
[5] N.T. McDougal, S.C. Virgil, and B.M. Stoltz, SYNLETT 2010, 11, 1712-1716.



