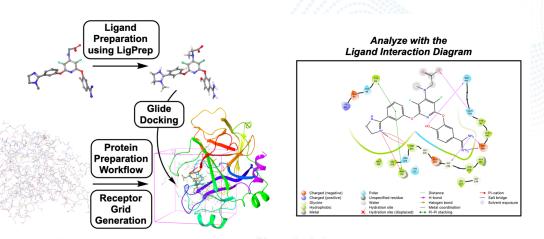
Updated: 1-23-22

1


Protein Ligand Docking

Created with: Release 2021-3 Prerequisites: working knowledge of Maestro Files Supplied: Protein_ligand_docking_worksheet Categories: biochemistry, medicinal chemistry

About this Lesson

Determining the binding mode of an active molecule to a given protein target is important in the drug discovery pipeline. This lesson will focus on reproducing an experimentally observed binding mode through docking.

Using Maestro, students will learn how to import a .pdb file of a crystal structure, prepare a protein and ligand, as well as dock a ligand into a protein receptor using Schrödinger's Glide. They will also analyze protein-ligand interactions from a Ligand Interaction Diagram.

Learning Objectives

- Prepare ligand and protein structures in Maestro
- Learn the steps of a molecular docking workflow using Schrödinger's Glide
- Analyze integral protein-ligand interactions within an active site using the Ligand Interaction Diagram

Schrödinger Education

Standards

- ACS Guidelines
 - Biological macromolecules (Section 5.1)
- ETS Chemistry GRE
 - Organic Chemistry Amino acids, Peptides (<u>3F</u>)
- AAMC MCAT
 - Structure, function, and reactivity of biologically-relevant molecules (5D)

Assessments

The following types of formative assessments are embedded in this lesson:

- Assessment of student understanding through discussion of warm-up questions and filling in any knowledge gaps about structure-based virtual screen steps
- Visual assessment of student-generated docking scores from their own set of ligands

Warm-Up Questions: To be done on their own or at the beginning of class

Read the article <u>"A systematic analysis of atomic protein-ligand interactions in the PDB"</u> and answer the following questions.

- 1) What are 7 of the most frequent protein-ligand interactions?
- 2) What is the most frequent protein family found in the protein data bank?

Lesson Outline

- 1. <u>What you will need for this lesson</u> p. 3
- 2. Introduction to Protein Ligand Docking p. 5
- 3. Preparing Protein Structures p. 7
- 4. Preparing a Ligand Structure p. 15
- 5. Generating a Receptor Grid p. 19
- 6. <u>Docking a Ligand</u> p. 23
- 7. <u>Analyzing Docked Poses</u> p. 25
- 8. <u>Visualizing Protein-Ligand Complexes</u> p. 27
- 9. Individual Exercise p. 35
- 10. Summary, Additional Resources, and References p. 36

Schrödinger Education

1. What you will need for this lesson

	 Go to the 'Data' folder and open your Class Folder found on the virtual cluster's desktop. Right-click on the folder called "Protein_Ligand_Docking" and copy folder to Desktop Here, you will find the lesson plan, worksheet, and any additional resources
Maestro Figure 1-1. Open Maestro.	 Open Maestro See Starting Maestro if you need help
MaestroFileEditSelectWorkspaceNew ProjectOpen ProjectOpen ProjectOpen ProjectOpen Recent ProjectSave Project AsExport ProjectLigand InteExport ProjectClose ProjectWorkImport StructuresImport StructuresRowInImport from ProjectRowInMerge ProjectGet PDBMerge ProjectExport StructuresExport StructuresFigure 1-2. Change Working Directory option.	 4. Go to File > Change Working Directory 5. Find your "Protein_Ligand_Docking" folder that you duplicated to your Desktop, and click Choose

Schrödinger Education

Maestro File Edit Select Workspanne New Project Open Project Open Project Open Recent Project Save Project As Ligand Interaction Close Project Workspanne Import Structures Import Recent Structures Import From Figure 1-3. Save Project panel.	 6. Next, go to File > Save Project As 7. Type "Docking_tutorial" and click Save a. The project will be titled Docking_tutorial.prj
Customize Actions Customize actions for: 3 buttons and scroll wheel? No Modifiers No Modifiers Button 1 Pick add Pick add Pick add Pick add Pick add <t< td=""><td> 8. Finally, check your Mouse Actions a. PC : Edit > Customize Mouse Actions b. Mac : Workspace > Customize Mouse Actions 9. Make sure you have the best option chosen for your set up. This lesson was written with a three-button mouse with a scroll wheel, meaning the scroll wheel is a button as well as a wheel. If you do not have a mouse, choose Trackpad. </td></t<>	 8. Finally, check your Mouse Actions a. PC : Edit > Customize Mouse Actions b. Mac : Workspace > Customize Mouse Actions 9. Make sure you have the best option chosen for your set up. This lesson was written with a three-button mouse with a scroll wheel, meaning the scroll wheel is a button as well as a wheel. If you do not have a mouse, choose Trackpad.
Get PDB File Note: Downloading will create PDB files in the current directory, and then automatically import them. PDB IDs: 1FJS Chain name (optional): Include: Diffraction data Biological unit Fetching from: Local or Web Change Download Cancel Help	 10. Go to File > Get PDB 11. For PDB IDs, type 1fjs 12. Click Download 1FJS is loaded into the Workspace A banner appears Note: Banners appear when files have been imported, jobs incorporated into the Entry List, or to prompt a common next step. Here, preparing the protein will be covered in the following section.

Schrödinger Education

2. Introduction to Protein Ligand Docking

As more protein structures are determined experimentally using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy, molecular docking is increasingly used as a tool in drug discovery. Molecular docking is often used to predict the binding mode of a small molecule into a protein binding site. Understanding the types of protein-ligand interactions gained from docking poses are fundamental in drug design.

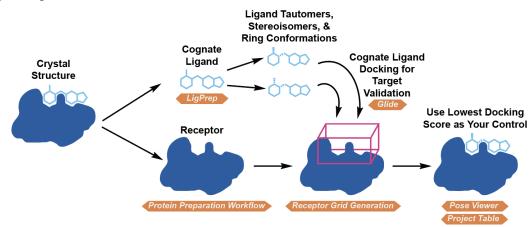


Figure 1. Workflow for Protein Ligand Docking

Figure 1 shows a schematic for how to prepare ligand and protein structures, an essential first step of modeling. Structure files obtained from the PDB, vendors, and other sources often lack necessary information for performing modeling-related tasks. Unfortunately, even when working with a high-resolution x-ray crystallographic structure, researchers can spend considerable time and effort correcting common problems such as missing hydrogen atoms, incomplete side chains and loops, ambiguous protonation states, and flipped residues. Additionally, waters that are crucial for ligand binding may also be missing from apo binding sites. Why would hydrogens, loops and side chains, as well as waters be missing? Let's break it down:

In crystallography, the X-ray beams are scattered off of electrons, and the only electrons around a hydrogen atom are those participating in the covalent bond with another atom. Additionally, the resolution of crystal structures tend to be greater than 1 angstrom. This is because of inherent dynamic fluctuations of a protein structure within a crystal and small variability between protein structures across different unit cells. However, perhaps this issue will be a thing of the past with the advent of new techniques and advancing of current methodologies.

Schrödinger Education

Loops and side chains of protein residues can often be missing as well from a protein structure – especially crystal and CryoEM structures. There are two reasons for this. The first is that these loops or side chains may access multiple different structures in each of the molecules in the crystal structure. The average over all of these molecules results in no electron density. The second is that even within the crystal structure, these residues or loops may be dynamic within each of the molecules that make up the crystals. For similar reasons, electron density cannot be observed through scattering. To combat this, we will use Prime to construct and add back in missing loops and residues in the lowest energy state. Finally, there may be high energy waters that play an important role in ligand binding that are not resolved in the PDB structure.

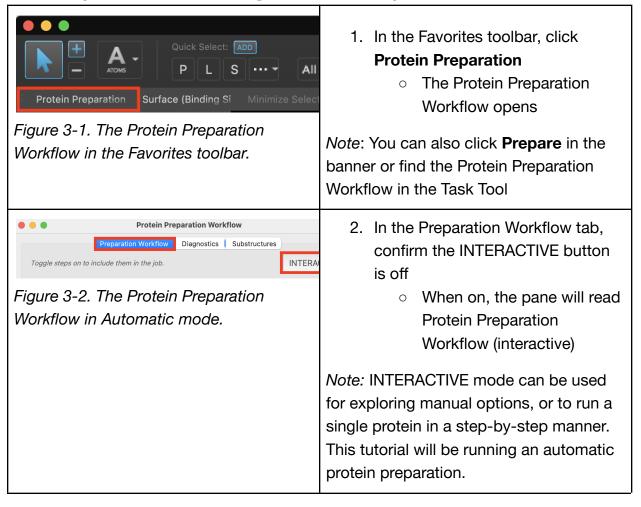
What is extra in protein structures? There are often molecules added in to help aid in crystallography that are not biologically relevant. This list of molecules includes small organic stabilizing agents like glycerol and metals like Copper and Zinc. Additionally, sometimes to help with X-ray diffraction, methionines are replaced with selenomethionines since selenomethionines are able to diffract X-rays better with their electron rich outer shells of selenium. Finally, if there are any chains in the structures (other proteins that were added to stabilize the protein of interest), it might be useful to remove these chains before performing docking or structure-based drug discovery.

In order to make these structures suitable for modeling tasks, we use the Protein Preparation Workflow to resolve issues. Similarly, ligand files can be sourced from numerous places, such as vendors or databases, often in the form of 1D or 2D structures with unstandardized chemistry. LigPrep can convert ligand files to 3D structures, with the chemistry properly standardized and extrapolated, ready for use for docking. We will go into more detail on these Maestro panels and workflows throughout the lesson.

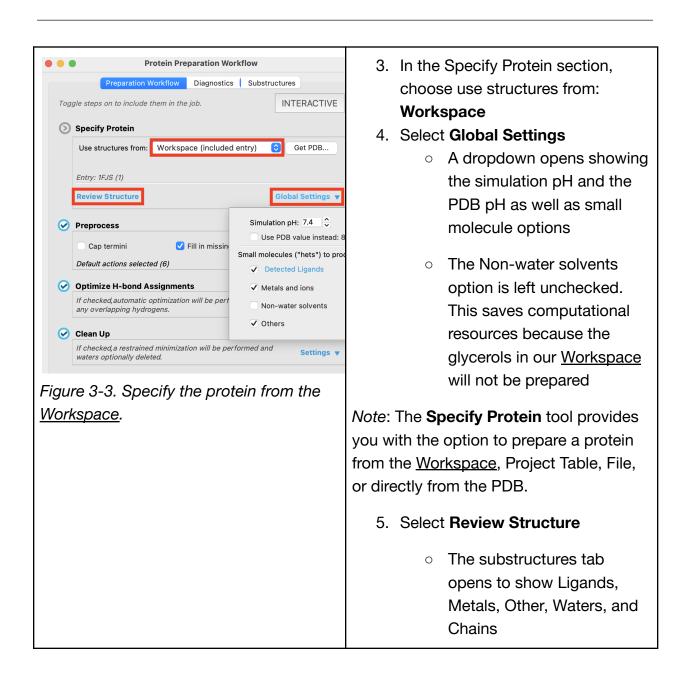
Here, we will reproduce an experimentally observed binding mode of 1FJS, which is a serine protease that catalyzes the conversion of prothrombin to thrombin, the first joint step that links the intrinsic and extrinsic coagulation pathways. In this example, the binding pocket has an ideal protein conformation to dock the ligand. Docking other screening ligands may present itself with more complications since they may prefer binding to a different protein conformation. See the lesson on Structure-Based Virtual Screening to learn more.

Schrödinger Education

3. Preparing Protein Structures for Glide Docking Model

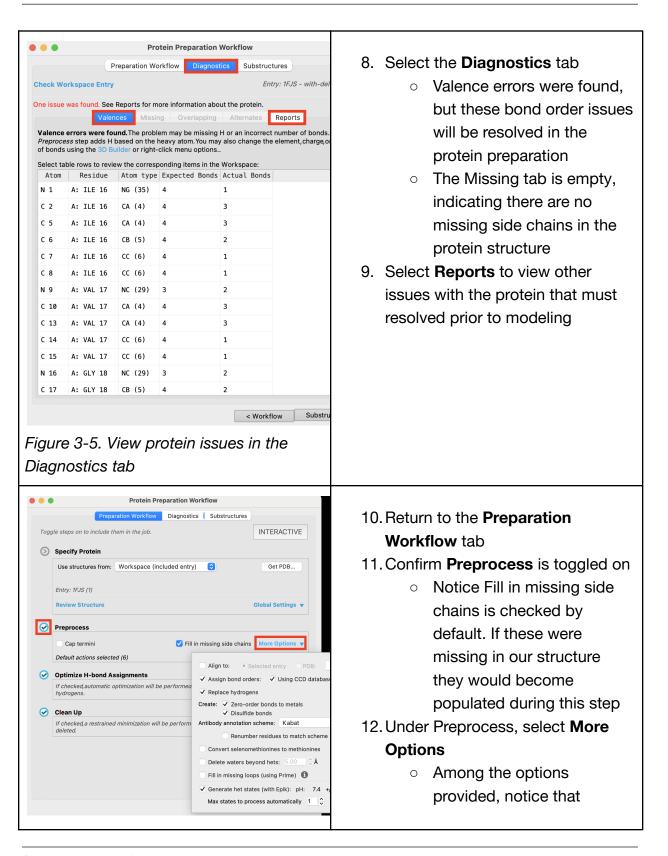

The Protein Preparation Workflow is run within the Preparation Workflow tab. The workflow has processing, modification, and refinement tools that we will use on the 1FJS.pdb structure. This tool is intended to support two main workflows - interactive, single protein preparations and highly-automated bulk protein preparations. Interactive preparations are manually performed in a step-by-step manner, with the opportunity to review the results of each step and easily control the order of modifications. Automatic preparation is pre-set by the user by the use of toggles that control which stages of the workflow are run in a single job. The Automatic workflow allows processing of multiple protein structures in a single job, permitting they maintain the same settings. The recommended minimal processing tasks are checked by default in both workflows but may be modified using the dropdown options. There are also options for filling in missing side chains and/or loops, depending on the needs of your structure. For more information see <u>Protein Preparation Workflow Panel Help</u>.

The Protein Preparation Workflow toggles include Preprocess, Optimize H-Bond Assignments, and Clean up. The Preprocess step fixes structural defects and adds missing information. The Optimize H-bond Assignment section is used for optimizing the hydrogen bonding network – a process that samples water orientations and flips Asn, Gln, and/or His side chains at a specified pH value. Adjusting the pH will change the protonation states of residues and ligands accordingly and is useful if you want to accurately reflect the experimental conditions. The Clean Up section fixes clashes that can occur with adding hydrogens or filling missing sidechains. By default, an RMSD of 0.3 Å is used, minimizing both the hydrogens and heavy atoms via harmonic penalty constraints. Optionally, hydrogen-only minimization can be chosen.


The Preparation Workflow tab may be used in conjunction with the Diagnostics tab and Substructures tab. These tabs are intended for diagnosis and analysis of the protein after preparation steps because automatic procedures cannot cover all possible cases.

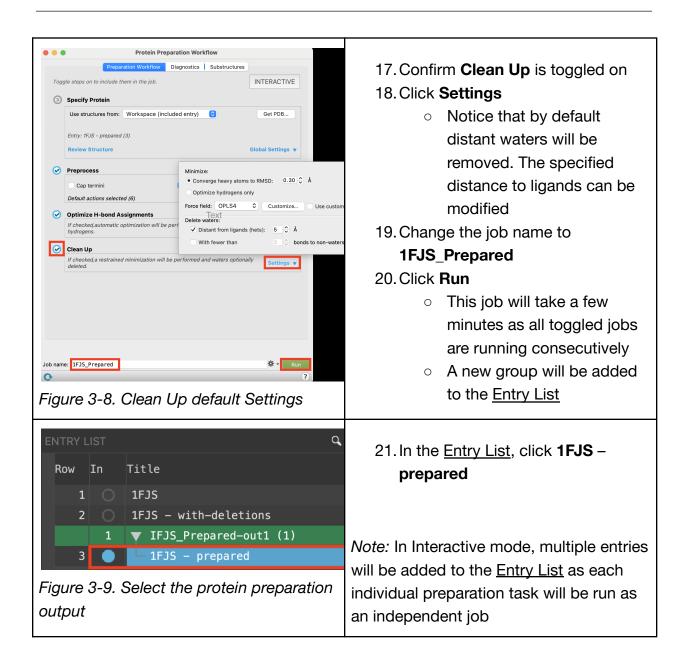
Schrödinger Education

3.1 **Prepare the Protein using the Protein Preparation Workflow**



Schrödinger Education

			Protein Pre	paration Workfl	ow			
Preparation Workflow Diagnostics Substructures			6.	Unde	r Chains, click Chain L			
Reload from Workspace Entry:				0	The <u>Workspace</u> zooms to			
Choose it	ems be	elow to	view in Workspac	e, copy, or delete.	Select			the chain
					ligands.To change the	7.	Click	Delete from Entry
					ick Reload from Works		0	The smaller of the two
The <i>Pre</i>					ur ligands.The (likely) r ose a different state to			chains is removed, and a
Lig		in ^	Res Nar					new entry appears in the
	Α		CA 507					Entry List.
	Α		CL 508					
х	Α		Z34 500			Note:	Unles	s specified, waters and
	Α		GOL 502					OL) belonging to chain L will
	Α		GOL 503					
Waters:				Chains:	Expand to PI	not be	e remo	ved. Glycerols are a
Chai A	n ^	нон ө	es Name + #	Chain A	Type Protein	crysta	llograp	phic artifact with no biologica
A		нон		L	Protein	releva	nce. Tl	he Select dropdown provides
A		нон				shorto	cuts for	r selecting these species
A		нон (603			based	l on the	eir proximity to specified
A		нон ө	604					oving waters and glycerols
								• • • •
item sel	ected	Clear		Copy to New E	Intry Delete from			able again in the Clean Up
Prepar	re Sele	cted C)nly	< Dia	agnostics Work	and A	nalysis	s steps
)				_				
gure	3-4	4. R	Review the	structure	e for			
repai	ratio	on i	n the Sub	structures	s tab.			



Schrödinger Education

Figure 3-6. Preprocess default settings	missing loops may be filled in using Prime 13. Check the pH range for generating het states with Epik • This should align with the physiological or assay pH. <i>Note</i> : Depending on your system and research question, you may want to keep certain waters. See <u>Protein Preparation</u> <u>Workflow Panel Help</u> for more details.
Protein Preparation Workflow Preparation Workflow Preparation Workflow Preparation Workflow Preprocess Cap termini Zactions selected Reset Cap termini Preprocess Cap termini Preprocess Cap termini Preprocess Cap termini Cap t	 14. Confirm Optimize H-bond Assignment is toggled on 15. Click Settings Overlapping atoms caused by the addition of hydrogens during the Preprocess step will be corrected, and side chains may be flipped when this job is run 16. Check the pH for Optimization This value should be captured in the pH range chosen during the Preprocess step

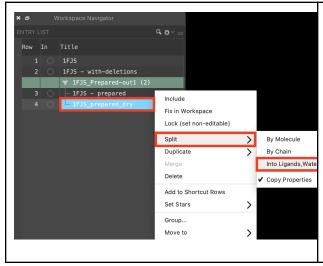
Schrödinger Education

	Protein Preparation Workflow					
Preparation	on Workflow Diagnostics Substructures	22. Return to the Protein Preparation				
Reload from Workspace	Entry: 1FJS - p	· ·				
Choose items below to view in Work	kspace, copy, or delete.	23. Click the Substructures tab				
	column shows detected ligands.To change the classificatio click <i>Reload from Workspace</i> above.	24. Choose Reload from Workspace				
	te multiple states for your ligands.The (likely) most favorab					
Lig Chain A Re	es Name + # S1 S2 S3 S4	select all GOL rows				
A CL 508 X A Z34 500						
A CA 507		26. Click Delete from Entry				
A GOL 502		27. In the Waters table, shift-click to				
A GOL 503		select all waters				
Waters: Chain ^ Res Name	Chains: Expand t	28. Click Delete from Entry				
A HOH 602	A Protein					
А НОН 604						
A HOH 605		Note: These waters could have been				
А НОН 607		removed during the Clean Up processing				
		step. Depending on your system and				
42 items selected Clear	Copy to New Entry Delete f	research question, you may want to keep				
Prepare Selected Only	< Diagnostics W	certain waters. See Protein Structure				
O		Preparation using the Protein Preparation				
Figure 3-10. Perf	form Substructure	Workflow or Protein Preparation Workflow Panel Help for more details.				
Review						
•••	Protein Preparation Workflow	1 In the 1EIC Drepared out1 group				
	m Workflow Diagnostics Substructures	1. In the 1FJS_Prepared-out1 group,				
Check Workspace Entry	Entry: $1FJS - p_i$ for more information about the protein.					
	Vissing Overlapping Alternates Reports	2. Return to the Protein Preparation				
View: Steric Clashes	• orresponding items in the Workspace:	Workflow and click the				
	Distance Min Allowed Delta	Diagnostics tab to make sure				
	<i></i>	there are no issues missed during				
0	nfirm issues have been	the preparation. You may need to				
resolved during p	preparation	click Check Workspace Entry				
		3. Exit the Protein Preparation				
		Workflow				

Schrödinger Education

Note: If issues persist after preparation,
perform specific interactive protein
preparations on the modified protein with
adjusted settings. The job type will
depend on which problems were found.

Question #1:


List one error that you identified to be a problem prior to running the Protein Preparation Workflow.

4. Preparing a Ligand Structure

In this section, we will prepare the co-crystallized ligand from the 1FJS structure for use in virtual screening. This is a typical step for <u>cognate ligand</u> docking, as it provides important validation prior to screening a larger ligand data set.

The following steps provide an example of how you would prepare a ligand data set using LigPrep. Ligand files can be sourced from numerous places, such as vendors or databases, often in the form of 1D or 2D structures with unstandardized chemistry. Before being used in a virtual screen, ligands must be converted to 3D structures, with their chemistry properly standardized and extrapolated.

4.1 Split the prepared structure

- In the <u>Entry List</u>, double click 1FJS

 with-deletions in the
 1FJS_Prepared-out1 group and
 rename the entry to

 1FJS_prepared_dry
- 2. right-click on **1FJS_prepared _dry**
- Choose Split > Into Ligands, Water, Other
 - Two new entries appear in the <u>Entry List</u>

Schrödinger Education

Figure 4-1. Right-click to split an entry into different components.	 4. <u>Include</u> 1FJS – prepared_dry_ligand ○ Only the ligand is displayed in the <u>Workspace</u> 			
4.2 Run LigPrep				
APPLICATIONS TASKS Glide Ligand Preparation and Library Design Discovery Informatics and C	1. Go to Tasks > Browse > LigPrep ○ The LigPrep panel opens			

ADME and Molecular Prop

Classical Simulation

Quantum Mechanics

General Modeling

Biologics

Materials

Workspace and Project Tabl

The LigPrep panel opens 0

Figure 4-2. LigPrep application in the Task toolbar.

Protein Preparation and Refinement

Receptor-Based Virtual Screening

Ligand-Based Virtual Screening

Free Energy Perturbation

Lead Optimization

Structure Analysis

Structure Alignment

Desmond

Induced Fit Docking.

FEP+

Jaguar

Phase

Prime WaterMap

WScore

Other Applications

MacroModel

Schrödinger Education

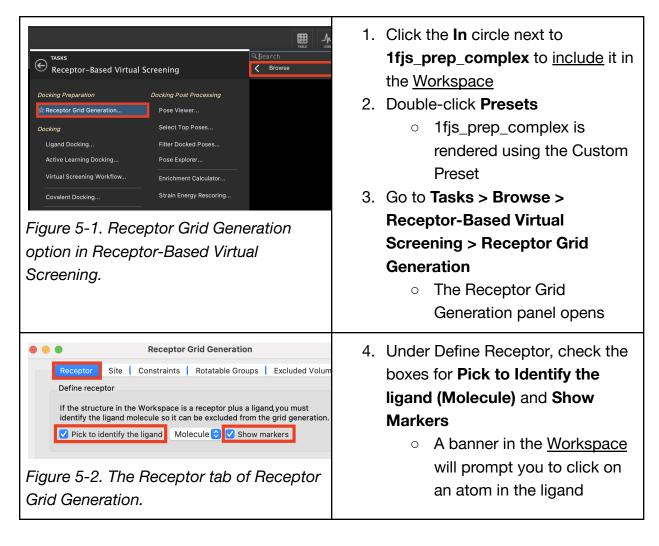
LigPrep	2. For Use structures from, choose
Use structures from: Workspace (1 included entry)	Workspace (1 included entry)
	3. Under Stereoisomers, choose
Filter criteria file: Create Brow	,
	Determine chiralities from 3D
Maximum ligand size: 500 atoms	structure
Force field: OPLS4 ᅌ Customize Use customized	Change Job name to ligprep_1fjs
Ionization:	5. Click Run
Do not change	 A banner appears when the
Neutralize Generate possible states at target pH: 7.0 +/- 2.0	job has been incorporated
Add metal binding states	 A new group is added to
Using: Ionizer Epik Include original state	the <u>Entry</u> <u>List</u>
🗹 Desalt 🔽 Generate tautomers	 The number of ligands in
Stereoisomers	this group is shown in
Computation:	0 1
Retain specified chiralities (vary other chiral centers)	parentheses
Determine chiralities from 3D structure Generate all combinations	Noto: The Tile functionality is yong useful
Generate at most: 32 per ligand	<i>Note</i> : The Tile functionality is very useful
For SD V2000 input, generate enantiomers if the chiral flag is 0	for seeing the slight variations in
	chemistry for the generated structures.
Output format: 💽 Maestro 🛛 SDF	The Tile View can be turned on by
	clicking the 🕂 in the Workspace
Job name: ligprep_1fjs 🔅 🕈	Configuration Toolbar in the bottom right
Host=localhost:6, Incorporate=Append new entries as a new group	corner and then clicking the Tile button.
Figure 4-3. The LigPrep panel.	

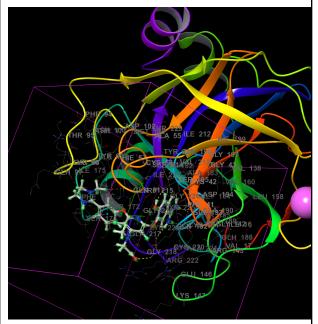
Row	In	Title	Stars	Entry ID	Date Added	Date Modified	PDB TITL	80	Prop
1		1FJS	***	1	16:40	16:40	CRYSTAL.	Q Searc	h
2		1FJS - preprocessed	****	2	16:41	16:41	CRYSTAL.		All
3		1FJS - hbond-opt	****	3	16:42	16:42	CRYSTAL.		
4	0	1FJS_prepared	***	4	16:43	16:43	CRYSTAL.		Maestro
	1	▼ 1FJS_prepared_split_by_stru							ConfGen
5		— 1FJS_prepared_ligand					CRYSTAL.	× •	► Epik
6		└ 1FJS_prepared_protein	***	8	16:43	16:43	CRYSTAL.	>	Impact
		▼ ligprep_1FJS-out1 (3)						N	LigPrep
7		— 1FJS_prepared_ligand	***	9	16:45	16:45	CRYSTAL.		Primary
8		— 1FJS_prepared_ligand	***	10	16:45	16:45	CRYSTAL.		Second
9			***	11	16:45	16:45	CRYSTAL.	2)	MacroMod
								🖬 🕨	▶ PDB
									Protein Pre

 Type Ctrl+T (Cmd+T) to open the <u>Project Table</u>

- 7. Click **Tree** to open the Property Tree
 - Different calculated properties can be toggled on and off
 - Click the arrow next to each application to view more properties

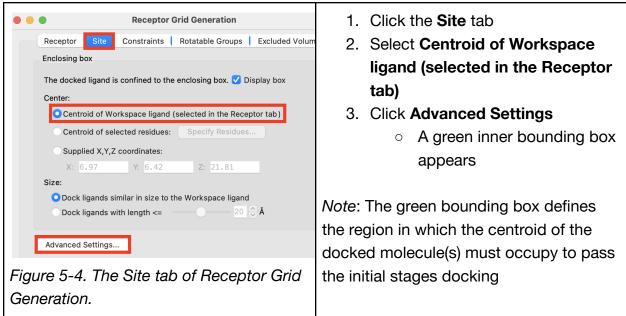
Question #2:


Preparing a ligand using LigPrep may produce multiple output structures for each input structure by generating different protonation states, stereochemical outcomes, tautomers, and ring conformations. Why is it important to prepare a ligand before proceeding with docking?


5. Generating a Receptor Grid

Grid generation must be performed prior to docking with Glide. The shape and properties of the receptor are represented in a grid by fields that become progressively more discriminating during the docking process. To add more information to a receptor grid, different kinds of constraints can be applied during the grid generation stage. For a comprehensive overview of constraint options, see the grid generation videos on our website or the <u>Glide User Manual</u> (Help > Help > User Manuals > Glide User Manual). In this tutorial, we will set a hydrogen bond constraint in our receptor grid.

5.1 Identify the binding site


5. Click on the **ligand**

- The ligand is now highlighted with a purple box around it
- The ligand will be excluded from the grid generation

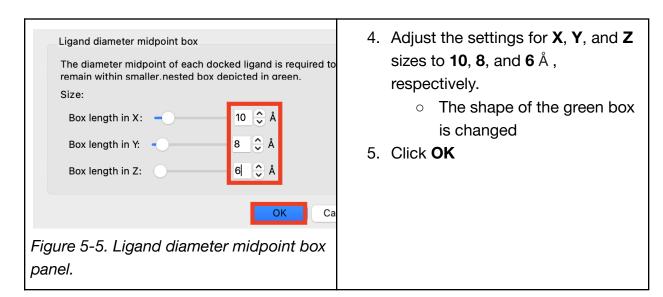

Note: The purple bounding box defines the region that the docked molecule(s) can occupy to satisfy the initial stages of docking

Figure 5-3. The ligand is defined to be excluded from grid generation.

5.2 Define the bounding box dimensions

5.3 Set a hydrogen bonding constraint

STRUCTURE HIERARCHY ASP 189 Current Selection Current Selection Figure 5-6. Search in the Structure Hierarchy.	 Type L to zoom to the ligand In the Structure Hierarchy, click the magnifying glass In the search field, type ASP 189 Select ASP 189 Note: Please see the Introduction to Structure Preparation and Visualization tutorial for instructions on how to add residue labels and show H-bonds
Fit: AUTO LIGAND ET	5. Under Fit, click Fit view to
Figure 5-7. Zoom to selected atoms.	selected atoms

Schrödinger Education

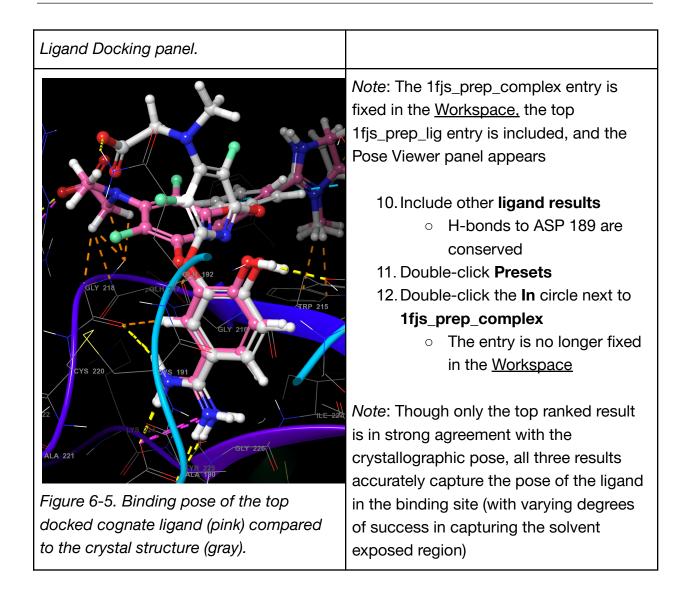
						-
		Recepto	Grid Genera	ation		9
	Receptor	Site Constraints	Rotatable	Groups Excluded Vo	lumes	•
1 constraints have	ve been define	ed (limit is 10 total)				
			d/Metal (1)	Metal Coordination (0)		10
metal-liganc	interactions	ould participate in hy during docking. Ligar constraints during do	d interactions			
Receptor ato	ms:					
Name A:ASP:	Atom 1484	Use Symmetry				
189:0D1(h						
					Delete	
					Delete A	
🗹 Pick aton	ns 🔽 Show n	narkers 🗹 Label ato	ms			
o name: glide-gr	id 1fis					
	10_11.50				_	
bmitting Job						
iou ro E	10 0		tora	rid genera	tion	
igure 5-	10. RI	иптесер	nor gi	nu genera	llion	
h						
<i>.</i>						

- Change Job name to glide-grid_1fjs
 Click Run
 - This job will take about a minute
 - A folder named glide-grid_1fjs is written to your <u>Working Directory</u>

Question #3:

Why is it necessary to generate a receptor grid? What would happen if you proceeded with docking a ligand without a receptor grid?

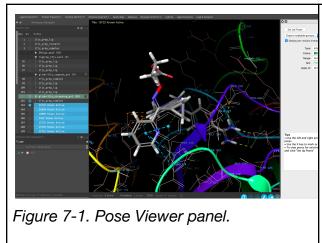
6. Docking a Ligand


The minimum requirements for running a Glide virtual screen are a grid file and a ligand file. It is strongly recommended that the grid file be generated from a protein prepared using the Protein Preparation Workflow and the ligand file be prepared using LigPrep. Additionally, you can choose the scoring function, set ligand- and receptor-based constraints, and define the output. Please see the Glide User Manual for more detail. In this section, we will include the hydrogen bonding constraint that was created in the previous step.

In this section, we will dock the <u>cognate ligand</u>. The information gained from this step can help with evaluating poses and beneficial interactions, which is useful for future hit finding. This job will use the receptor grid file that was generated in the previous step.

Ligand Docking Receptor grid: From file © Display receptor Sho File name: /Users/wmiller/Desktop/Updates/glide-grid_lfjs/glide-grid_lfjs.zip] Ugands to be docked We strongly recommend that you prepare the ligands before docking (for example, with LigPrep or MacroModel). Use ligands from: Files © File name: r/Desktop/Updates/Ligprep_IFJ5/Ligprep_1FJ5-out.maegz Browse Range: 1 : 0 to: 000 © End Use input partial charges Do not dock or score ligands with more than: 500 0 atoms Figure 6-3. The Ligands tab of the Ligand Docking panel.	 Go to Tasks > Browse > Receptor-Based Virtual Screening > Ligand Docking The Ligand Docking panel opens The Ligand Docking panel opens Next to Receptor grid, click Browse and choose glide-grid_1fjs.zip In the Ligands tab, for Use ligands from, choose Files Next to File name, click Browse and choose ligprep_1FJS-out.maegz
Ligand Docking Receptor grid: From file Pile name: sed Virtual Screening using Glide/glide-grid_lfjs/glide-grid_lfjs_2.zip Ligands Settings Constraints Output Core Grid-based Shape Torsional Select constraints to use in docking.Constraints can be grouped.Each group of constraints must I satisfied.Optional constraint matches requested: 1 (Maximum is 4) Select constraint matches requested: 1 (Maximum is 4) So Show markers Group 1 (All required) Group 2 (All required) Group 3 (All required) Group 4 (All required) Vise Name Receptor Constraint Type Ligand Feature Available constraints (1 in use) Use Name Receptor Constraint Type Ligand Feature AtASP: Beit Feature Must match: At least: 10 Test constraint satisfaction only after docking Job name: glide_1FJS_cognate Host=bocahost:1,Incorporate=Append new entries as a new group Figure 6-4. The Constraints tab of the	 5. Click the Constraints tab 6. Click on the Grid-based tab 7. Under Use, check the H-bond constraint for ASP 189 8. Change Job name to glide_1FJS_cognate 9. Click Run This job takes about a minute A banner appears to show that files have been incorporated A new group is added to the Entry List

Schrödinger Education



7. Analyzing Docked Poses

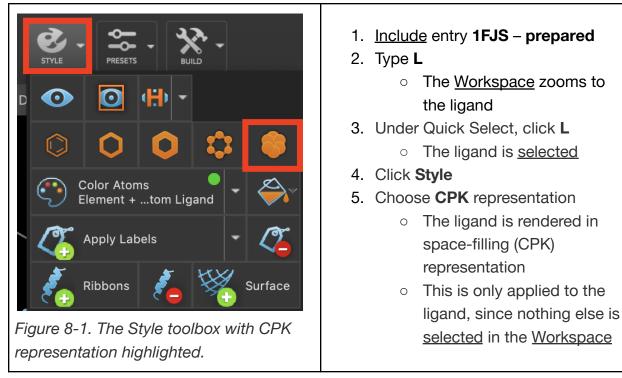
Multiple Glide docking results can be viewed in the <u>Entry List</u> and be identified by the job name. Docked results will show the receptor in the first row and the docked ligand(s) in the subsequent row(s), where they are ordered by best to worst docking score, or Glide Gscore if Epik state penalties were not applied in LigPrep. The Glide Gscore is broken down by van der Waals electrostatic components and can be seen in the <u>Project Table</u>, using the Property Tree. You can read more about how docking scores/poses are generated <u>here</u> and <u>here</u> and what dependencies they have <u>here</u> and <u>here</u>.

Schrödinger Education

7.1 Visualize the results using Pose Viewer

7.2 Analyze the results

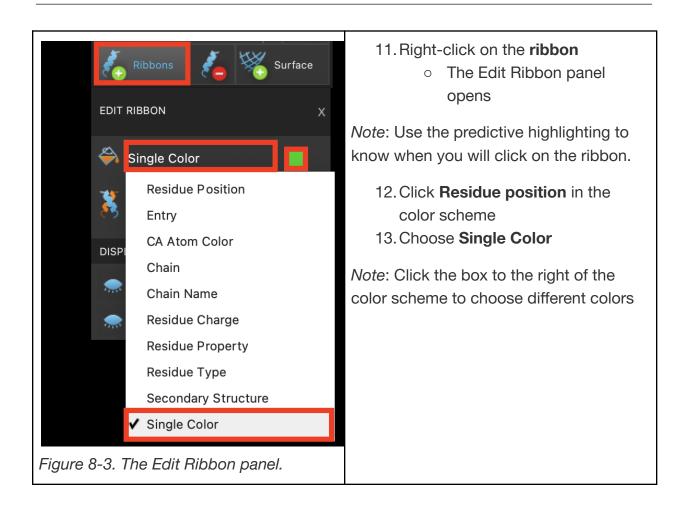
File Table Data Select Window ePlaye 🐖 📑 📰 📨 👭 🚜 ABC **+**|+ ъĘ TF-Import Export 2D Vie 000005 Row In Title 1 1fjs_prep_lig 2 1fis prep receptor 3 1fjs prep complex ▶ 50ligs_epik (92) ligprep_1FJS-out1 (3) ▶ glide_1FJS-cognate_pv1 (4) 2 103 1fjs_prep_complex 15650 Known Active 15722 Known Active 104 🔵 105 106 107 108 109 Figure 7-2. Glide Primary properties shown in the Project Table.


- Step through the results using the right and left arrow keys
 - Ligand poses are displayed in the <u>Workspace</u>
 - Residues are colored according to their interaction energies, ranging from green (favorable) to red (unfavorable)
- 2. Close the Pose Viewer panel
- 1. In the <u>Project Table</u>, click the Property **Tree** icon
 - The Property Tree appears on the right of the <u>Project</u> <u>Table</u>
- 2. Click the All box twice
 - All boxes are deselected
- 3. Click the Glide box
- 4. Click Primary
 - Only the Glide Primary properties are shown

Note: Please see <u>Knowledge Base Article</u> <u>1027</u> for more information on the difference between docking score, Glide gscore, and glide emodel score.

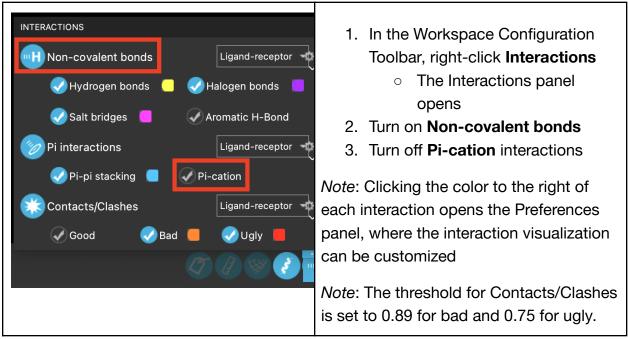

8. Visualizing Protein-Ligand Complexes

In this section, we will explore ways to visualize structures in the <u>Workspace</u>. Object representation can be changed in a number of ways using the Style toolbox. Presets offer the ability to quickly render a structure in a number of styles, similar to PyMOL, to facilitate easy visualization. Presets can be used in a variety of ways, from de-cluttering your structure to creating publication-quality images. We will analyze the protein-ligand complex by looking at the interactions, and generate a custom set for some binding residues of interest. Finally, we will visualize the surface of the binding pocket and I save an image of the complex.



8.1 Use the Style toolbox

Schrödinger Education



Apply a Preset style 8.2

Apply Custom Preset Edit Custom Preset Edit Custom Preset Reapply when Workspace changes Maestro Default BioLuminate Default Simple Simple (no solvent) Ball and Stick B Factor Technical Ligands Ligands Ligand Sites Pretty	 Click Presets Choose Pretty The Workspace is rendered with ribbons, a green thick-tube ligand, and side chains are hidden Double-click Presets The Workspace is redrawn with the Custom Preset The Workspace zooms to the ligand
---	---

Visualize Interactions 8.3

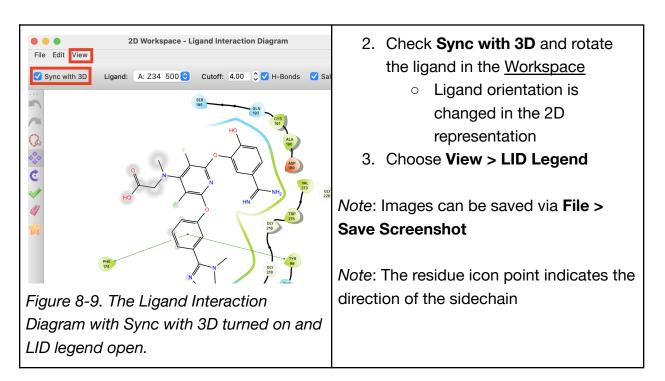
Schrödinger Education

The recipient shall not use the Schrödinger software, materials and information other than for the purposes for which they were distributed. Schrödinger owns the software and all materials, and retains all related intellectual property rights. Schrödinger will retain all intellectual property rights relating to any suggestions, ideas, enhancement requests, feedback, recommendations or other information provided by the recipient or any third party. The recipient shall not use Schrödinger's names or marks without Schrödinger's prior written consent. THE SOFTWARE AND MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL SCHRÖDINGER OR ITS AFFILIATES OR LICENSORS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES.

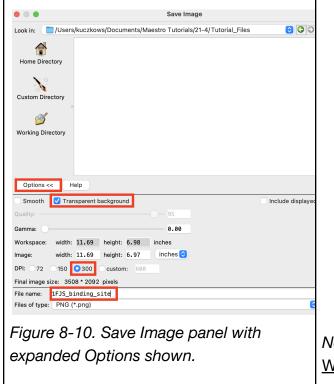
Figure 8-5. The Interactions panel in the	These values correspond to the ratio of	
Workspace Configuration Toolbar.	the distance between the two atoms and	
	the sum of their Van der Waals radii.	

1. Under Quick Select, click ... and All Previous Define... choose Binding Sites SELECT OBJECTS 2. Click Style and choose Surface A solid gray surface is Primary Objects Hydrogen Sets applied **Displayed Atoms** All Hydrogen Atc • An S is next to the title in **Binding Sites** All Nonpolar the Entry List, click to see **Binding Sites + Ligands** Nonpolar Protein surface options Nonpolar Ligand Ligands Note: Click Surface (Binding Site) in the **Nucleic Acids** Polar Favorites toolbar to perform the same Figure 8-6. More options in Quick Select. task

8.4 Generate and manipulate a surface



Surface Display Options Name: QuickMolecularSurface Style: Solid Mesh Dot Transparency: Front surface: 0 Back surface: 0 © Back surface: 0 © Color scheme: Electrostatic potential Color ramp: Red_White_Blue Min: -0.1 Max: 0.1 Reset Show legend in Workspace	 3. Right-click the surface 4. Choose Display Options The Surface Display Options panel opens 5. For Color Scheme, choose Electrostatic Potential 6. Change the Min and Max values to -0.1 and 0.1, respectively 7. Click OK The intensity of the surface colors is increased
OK Cancel	
Figure 8-7. The Surface Display Options panel.	


8.5 Generate a 2D interaction diagram

Quick Select: ADD PLS···· All		 In the Favorites toolbar, click Ligand Interaction The 2D Workspace - Ligar 		
Protein Preparation Ligan	d Interaction	Surface (Binding	Intera	action Diagram opens
Figure 8-8. Ligand Interaction Diagram in the Favorites toolbar.				

8.6 Save an image of the Workspace

- Go to Workspace > Save Image As
 - The Save Image panel opens
- 2. Click **Options >>**
- 3. Check **Transparent background** and select **300** DPI
- 4. Change File name to **1FJS_binding_site**
- 5. Click Save
 - A .png image of the <u>Workspace</u> is saved to your <u>Working Directory</u>

Note: If an item is highlighted in the <u>Workspace</u>, the image is saved with the selection highlights

Schrödinger Education

<i>Note</i> : Go to Tasks > Browse > Workspace and Project Table
Operations for more image options,
including Ray Trace

Question #4:

What important protein-ligand interactions do you see when the cognate ligand is docked? Take a screenshot of the Ligand Interaction Diagram below. List specific residues and define specific interactions that may play an important role in binding.

9. Individual Exercise

Part A:

Perform the same preparation steps on the 2XIR crystal structure. What were some of the issues with this PDB structure from the first step of protein preparation?

Part B:

Search the Protein Data Bank for another protein-ligand complex and do the following:

- a) Import the .pdb file into Maestro
- b) Split the structure into Ligands, Waters, and Receptor
- c) Prepare the protein using the Protein Preparation Workflow
- d) Prepare the ligand using LigPrep
- e) Detect the binding site using Receptor Grid Generation
- f) Dock all the conformations and tautomers generated from LigPrep back into the prepared protein using Schrödinger's Glide
- g) Take a screenshot of your docking results including the docking score and pose of the best docking pose.

10. Summary, Additional Resources, and References

In this lesson, we imported and prepared a protein and ligand file, then visualized and analyzed the protein-ligand complex. A raw PDB file was made suitable for modeling purposes using the Protein Preparation Workflow, and the <u>cognate ligand</u> was extrapolated using LigPrep in the same fashion that would be used for a multi-ligand file. Then the prepared ligand was docked into the prepared protein using Glide. The <u>Workspace</u> Configuration toolbar allowed for toggling various components in the <u>Workspace</u> and the 2D view in the Ligand Interaction Diagram gave another way to analyze information.

For further information, please see: Maestro 11 Training Portal Protein Preparation Workflow Panel Help

Glossary of Terms:

cognate ligand - a ligand that is bound to its protein target

<u>Entry List</u> - a simplified view of the Project Table that allows you to perform basic operations such as selection and inclusion

included - the entry is represented in the Workspace, the circle in the In column is blue

incorporated - once a job is finished, output files from the Working Directory are added to the project and shown in the Entry List and Project Table

<u>Project Table</u> - displays the contents of a project and is also an interface for performing operations on selected entries, viewing properties, and organizing structures and data

<u>Scratch Project</u> - a temporary project in which work is not saved, closing a scratch project removes all current work and begins a new scratch project

<u>selected</u> - (1) the atoms are chosen in the Workspace. These atoms are referred to as "the selection" or "the atom selection". Workspace operations are performed on the selected atoms. (2) The entry is chosen in the Entry List (and Project Table) and the row for the entry is highlighted. Project operations are performed on all selected entries

Working Directory - the location that files are saved

Schrödinger Education

<u>Workspace</u> - the 3D display area in the center of the main window, where molecular structures are displayed

