Stereoisomers

Created with: Release 2021-3
Prerequisites: working knowledge of Maestro
Files Supplied: Stereoisomers_worksheet
Categories: organic chemistry

About this Lesson

In this lesson plan, students will explore compounds called stereoisomers that differ from each other only in the three-dimensional, spatial arrangement of their atoms, but not in the connectivity of their atoms. The connection between stereoisomerism and drug action will also be discussed.

Using Maestro, students will use the 2D Sketcher and 3D Builder tools to learn how to draw different kinds of stereoisomers. Energy minimizations and geometry optimization calculations will be performed using Jaguar. The tile function will be used to compare stereoisomeric relationships between pairs of molecules to determine if they are enantiomers or diastereomers.

Learning Objectives

- Designate configuration of a stereocenter using the Cahn-Ingold-Prelog (CIP) system
- Determine the stereochemical relationship between a pair of molecules

Standards

- ACS Guidelines:
- Understand molecular structure and bonding (Section 5.2)
- ETS Chemistry GRE:
- Structure, Bonding and Nomenclature - Stereochemical Notation (3.A)
- AAMC MCAT:
- Stereochemistry of covalently bonded molecules (5B)

Assessments

The following types of formative assessments are embedded in this lesson:

- Assessment of student understanding through discussion of warm-up questions and filling in any knowledge gaps about constitutional isomers
- Visual assessment of student-generated enantiomers and diastereomers

Warm-Up Questions: To be done on their own or at the beginning of class

Watch the Khan Academy videos on stereochemistry.

1) What is the difference between constitutional isomers and stereoisomers?
2) Label the following pair of molecules as either constitutional isomers or stereoisomers. Both the skeletal structure and bond line structure of each molecule have been provided.

3) How many chiral center(s) does the following molecule have?

Lesson Outline

1. What you will need for this lesson - p. 3
2. Introduction to Stereoisomers - p. 5
3. Assigning Configuration using the Cahn-Ingold-Prelog Rules - p. 7
4. Enantiomers - p. 17
5. Diastereomers - p. 22
6. Individual Exercises - p. 27
7. Summary, Additional Resources, and References - p. 29
8. Glossary of Terms - p. 29

1. What you will need for this lesson

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 1. Go to the 'Data' folder and open your } \\ \text { Class Folder found on the virtual } \\ \text { cluster's desktop. }\end{array} \\ \hline \text { 2. Right-click on the folder called } \\ \text { "Stereoisomers" and copy folder to } \\ \text { Desktop } \\ \text { - Here, you will find the lesson } \\ \text { plan, worksheet, and any } \\ \text { additional resources }\end{array}\right]$

Schrödinger Education

2. Introduction to Stereoisomers

Isomers are molecules that have the same molecular formula but have differing structural arrangements in space. Though they are made up of the same components, distinct isomers do not necessarily bear resemblance to each other both visually and in terms of their properties. Isomers can be broken into two types: constitutional isomers and stereoisomers.

Constitutional isomers are when two molecules share the same chemical formula but differ in structural arrangement. For example, butane (or n-butane) and 2-methylpropane (or isobutane) both have a molecular formula of $\mathrm{C}_{4} \mathrm{H}_{10}$, but they differ in connectivity. N-butane is more linear whereas isobutane is more branched, yet they have the same number of carbon and hydrogen atoms in each isomer.

Constitutional isomers of $\mathrm{C}_{4} \mathrm{H}_{10}$

Figure 2-1. Constitutional isomers of $\mathrm{C}_{4} \mathrm{H}_{10}$
Stereoisomers have an identical molecular formula and atomic sequence but differ in how they are spatially arranged. Cis-trans stereoisomerism can be used to denote disubstituted cycloalkanes. For example, cis-1,2,-dimethylcyclohexane and trans-1,2-dimethylcyclohexane both have the same molecular formula of $\mathrm{C}_{8} \mathrm{H}_{16}$ as well as the same connectivity of atoms, but the spatial arrangement of the methyl groups differ. The cis stereoisomer shows the two methyl groups on the same side of the ring, while the trans stereoisomer shows the two groups on opposite sides of the ring.

$$
\text { cis-trans stereoisomers of } \mathrm{C}_{8} \mathrm{H}_{16}
$$

cis-
1,2-dimethylcyclohexane

trans-
1,2-dimethylcyclohexane

Figure 2-2. Cis-Trans isomers of $\mathrm{C}_{8} \mathrm{H}_{16}$
Furthermore, the terms cis and trans are also used to describe stereoisomerism in double bonds. For example, cis-2-butene and trans-2-butene both have the same

Schrödinger Education

molecular formula of $\mathrm{C}_{4} \mathrm{H}_{8}$ as well as the same connectivity of atoms, but the spatial arrangement of the methyl groups differ. The cis stereoisomer shows the groups on the same side of the double bond, while the trans stereoisomer exhibits groups on opposite sides of the double bond. These two molecules have two different physical properties because the double bond does not have free rotation like single bonds do at room temperature.

$$
\text { cis-trans stereoisomers of } \mathrm{C}_{4} \mathrm{H}_{8}
$$

cis-2-butene
Boiling point: $4^{\circ} \mathrm{C}$

trans-2-butene
Boiling point: $1^{\circ} \mathrm{C}$

Figure 2-3. Cis-Trans isomers of $\mathrm{C}_{4} \mathrm{H}_{8}$

The last type of stereoisomer delves into a specific property called chirality. Chiral objects are not superimposable on their mirror images. The most common source of molecular chirality is the presence of a chiral center which is a carbon atom with four unique, or different, substituents attached to it. The tetrahedral $s p^{3}$-hybridized carbon atom in bromochloroethanol shown below is chiral because it contains four different substituents: $-\mathrm{OH},-\mathrm{Cl},-\mathrm{Br}$, and $-\mathrm{CH}_{3}$. We will go into much more detail on how to assign chirality and how to label stereoisomeric relationships of two chiral molecules later in this lesson.

Stereoisomers of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OClBr}$

Figure 2-4. Stereoisomers of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OClBr}$

3. Assigning Configuration using the Cahn-Ingold-Prelog (CIP) Rules

In order to determine the specific configuration of a stereocenter, a system developed by three chemists named Cahn, Ingold, and Prelog, was developed.

- Step 1: Identify the chiral center and rank the substituents around the chiral center. The higher that atomic number, the higher the priority.
- If priority can't be assigned by the direct atoms bonded to the chiral center, look to the next set of atoms. Priority is assigned at the first point of difference
- Atoms in a double or triple bond are considered to be bonded to an equivalent number of similar atoms by single bonds
- Step 2: Orient or rotate the molecule so the lowest ranked atom or group points towards the back (on a dashed bond).
- Step 3: Read the 3 highest priority groups.
- If the 3 groups are read clockwise, the configuration is (R).
- If the 3 groups are read counterclockwise, the configuration is (S).

Example \#1. Assign configuration of (R) or (S) to the following chiral molecule.

- Step 1: After looking at the periodic table, Br has the highest atomic number of 35 , then Cl has the second highest atomic number of 17 , then O has the third highest atomic number of 8 , and C has the lowest atomic number of 6 .

- Step 2: Since C has the lowest atomic number making it the lowest priority group, we have to rotate the methyl group to the back (on a dashed bond). Then we can relabel our priority groups.

- Step 3: The sequence $1>2>3$ follows a clockwise configuration, so we can assign the chiral center as (R).

Computational Exercise \#1: Geometry Optimization using Maestro

Even though we draw bonds coming towards us as wedged bonds and bonds going away from us as dashed bonds, sometimes it is still difficult to visualize the three-dimensionality of a molecule when it is drawn on a flat piece of paper. Now we are going to learn how to build a three-dimensional structure of a chiral molecule, optimize its geometry using Maestro, and use the CIP rules to assign its stereochemical configuration. Visualizing the molecular structure can be done in three different ways:

1) Through the 2D Sketcher
2) Through the 3D Builder
3) Or, by importing pre-built molecules

We will be using the 2D Sketcher tool in Maestro.

Part 1. Build (R)-1-bromo-1-chloroethane using 2D Sketcher

Before optimizing any molecular geometry, you will need a starting molecule in your workspace. Let's draw the structure of 1-bromo-1-chloroethane using the 2D sketcher.

1. Go to Edit > 2D Sketcher
2. Draw 1-bromo-1-chloroethane exactly how it is shown in Figure 3-2.
a. Go to the selection bar on the left
b. Create a methyl group by choosing the "draw line" and clicking in the 2D Workspace
c. Drag rightwards from the methyl group to add another carbon
d. Create a wedge bond by choosing the wedge bond and dragging down from the central carbon
e. Put your cursor over the end of the wedge and type Cl to add a chlorine
f. Create a dashed bond by choosing the dashed bond and dragging to the left from the

Schrödinger Education

Schrödinger Education

Figure 3-6. Setting the Jaguar Optimization panel to optimization.


```
    - }\begin{array}{l}{\mathrm{ chloroethane}}\\{\mathrm{ choro-1-}}\\{}\\{\hline}
```

Figure 3-7. Setting the QM parameters for optimization.

Various settings can be altered depending on the specific use case. We will only adjust the Input tab for this example.
6. For Theory, select B3LYP-D3
7. For Basis set, select 6-31G**

A few additional comments about preparing for an optimization calculation:

- If you hover the mouse over the basis set in the table, you can see the number of basis functions associated with the basis set. This is useful to know since the quality of the basis set usually improves as the number of functions increases, noting again the trade-off between quality and computational expense
- Always make sure the charge and the spin multiplicity are correct (in this case, 1 -bromo-1-chloroethane is a neutral, singlet, so charge $=0$ and spin multiplicity $=1$). Multiplicity is defined as $2 S+1$, where S is the total orbital spin of the molecule. For instance, a system with one unpaired electron is a doublet (multiplicity $=2$), since the total orbital spin $S=1 / 2$.
- Use the Atom-Level Settings button to define per-atom basis sets
- Constraints can be defined on the Optimization tab
- Properties, such as atomic charges, vibrational frequencies, surfaces and more can be requested on the Properties tab
- Solvent can be defined via several implicit solvation models on the Solvation tab. Note that this example is a gas-phase geometry optimization
- Read more about geometry optimization with Jaguar here

Figure 3-8. Naming and running the job.

| |
| :--- | :--- | :--- |

Figure 3-9. Banner that shows the job is finished - Result has been incorporated.

Figure 3-10. The output molecule of 1-bromo-1-chloroethane.

Figure 3-11. Viewing and styling 1-bromo-1-chloroethane.

> names with S and P , respectively
9. Adjust the job settings () by clicking the gear button to the right of the Job name

- Choose CPU (1600) as your host with 1 processor

10. Click Run

When the job finishes, a banner will appear indicating that the result has been incorporated. At this time, the molecule with the optimized geometry is now shown in the workspace
11. A new entry group is added to the entry list titled
1-bromo-1-chloroethane_opt_B3LYP-D3_6-31GSS. 011 (1). Select and include the molecule titled 1-bromo-1-chloroethane in this subgroup. This is your optimized structure.
12. Change the representation to ball-and-stick by clicking on the Style menu and choosing Apply ball-and-stick representation
13. Change the color of the atoms by clicking on the Style > Color Atoms > Element + Custom Ligand

Schrödinger Education

Schrödinger Education

Figure 3-14. Toggling labels on.

Figure 3-15. Toggling labels off.

Figure 3-16. Determining where the chiral center is.

Part 3. Assign stereochemical

 configuration using CIP rulesNow that we optimized the geometry of 1-bromo-1-chloroethane, let's go through the CIP rules to determine its stereochemical configuration.
18. Determine which carbon atom is the chiral center. Remember that a chiral carbon has 4 unique, or different, substituents around it

19. Label the priorities of each atom surrounding the chiral center based on atomic number (this can be found from a periodic table). Feel free to take note of these priorities on a separate piece of paper

Figure 3-17. Labeling priorities of each substituent around the chiral center.

Schrödinger Education

Figure 3-18. Rotating the molecule to the lowest priority group is facing the back.

Figure 3-19. Assigning configuration based on either clockwise or counterclockwise sequence of the first 3 priority groups.
20. Rotate the molecule so the lowest priority group is facing the back
21. Relabel priorities and determine whether $1>2>3$ is clockwise (R) or counterclockwise (S)
22. Since groups $1>2>3$ are going clockwise, this particular isomer is (R)-1-bromo-1-chloroethane

Schrödinger Education

Schrödinger Education

4. Enantiomers

A pair of compounds with the same atom connectivity, molecular formula, and only 1 chiral center can either be identical or enantiomers with one another. If they are identical, they would have the same exact stereochemical configuration. If they have completely opposite configurations (i.e. one molecule is (R) while the other is (S)), then they would be enantiomers. Enantiomers are stereoisomers that are nonsuperimposable, mirror images of one another and exhibit identical physical properties. When exposed to plane-polarized light, however, enantiomers exhibit different behavior. An enantiomer that rotates plane-polarized light in the positive direction is called dextrorotatory [(+), or d-], while the enantiomer that rotates the light in the negative direction is called levorotatory [(-), or I-]. When both d- and I- isomers are present in equal amounts, the mixture is called a racemic mixture. To learn more about the optical activity of enantiomers, you can read more about it here.

To better understand and visualize a pair of enantiomers, let's draw the enantiomer of (R)-1-bromo-1-chloroethane in Maestro.

Computational Exercise \#2: Compare Multiple Molecules by Tiling

Figure 4-2. Including and selecting the new entry.	
 Figure 4-3. Changing the wedged bond to a dashed bond.	4. Go to Edit > 2D Sketcher 5. Change the wedged $\mathrm{C}-\mathrm{Br}$ bond to a dashed $\mathrm{C}-\mathrm{Br}$ bond
 Figure 4-4. Update Entry.	6. Click Update Entry 7. Change the representation to ball-and-stick by clicking on the Style menu and choosing Apply ball-and-stick representation 8. Change the color of the atoms by clicking on the Style > Color Atoms > Element + Custom Ligand 9. To display stereochemistry labels, click Style > Apply Labels > Stereochemistry + Charge Number

Schrödinger Education

ENTRY LIST ${ }^{\text {a }}$ \%	Now let's view our molecules side by side. 11. Simultaneously include (control + click or command + click) both the R -1-bromo-1-chloroethane and the S-1-bromo-1-chloroethane
Row In Title	
1 1-bromo-1-chloroethane	
1 1-bromo-1-chloroethane...	
2 - R-1-bromo-1-chloroetha...	
1 1-bromo-1-chloroethane...	
3 - S-1-bromo-1-chloroetha...	
Figure 4-7. Including both molecules in the Entry List.	
WORKSPACE TOCCLES	12. Click the + symbol in the bottom left-hand corner to show workspace configuration panel 13. Click Tile under the Workspace Layout
(円) Unit Cell Polyhedrons	
WORKSPACE CADGETS	
(II) Clipping Planes Workspace Navigator	
(0) 2D Overlay Workspace Properties	
>-) Command Input Area (nary Sequence Viewer	
workspace layout	
(80) Tile ${ }^{\text {color: }}$	
(-) Stereo Font Size: $A^{4} A^{-}$	
Figure 4-8. Opening the Workspace Configuration Panel	

[^0]

Figure 4-9. Tiling the two enantiomers side-by-side.

14. Change the background color to white by clicking on the + symbol in the bottom right-hand corner
15. You can take a screenshot of your molecules to input into the Stereoisomers worksheet.

Figure 4-10. Changing the background color to white.

Schrödinger Education

5. Diastereomers

Diastereomers are stereoisomers that are not mirror images of one another. The difference between enantiomers and diastereomers is more apparent when we compare compounds with more than one chiral center. For example, let's take a look at the structure of 2-methylcyclohexanol.

2-methylcyclohexanol
Figure 5-1. Structure of 2-methylcyclohexanol

This molecule contains two chiral centers where each one can either have the (R) configuration or the (S) configuration. A molecule can have 2^{n} number of possible stereoisomers where n is the number of chiral centers. Since 2-methylcyclohexanol has 2 chiral centers, it has a total of $2^{2}=4$ possible stereoisomers, as shown below.

Figure 5-2. The possible stereoisomers of 2-methylcyclohexanol
Stereoisomers \#1 and \#2 are enantiomers because both chiral centers completely inverted to the opposite configuration. The same goes for stereoisomers \#3 and \#4 where the two chiral centers in stereoisomer \#3 were (1R, $2 R$) and they both inverted to the opposite configuration of $(1 S, 2 S)$ in stereoisomer \#4. Now if we compare stereoisomer \#1 to stereoisomer \#3, notice that one chiral center stayed the same (1R) whereas the second chiral center inverted from (2S) to $(2 R)$. Since only one chiral center inverted, these two isomers are no longer mirror images from one another, making them diastereomers. And the same goes for stereoisomers \#2 and \#4 where they are both diastereomers as well.

As previously mentioned, cis-trans isomers of alkenes are also considered to be diastereomers because they too are not mirror images of one another. Let's build a few diastereomeric alkenes to visually compare their differences.

Computational Exercise \#3: Build Diastereomeric Alkenes

[^1]

Schrödinger Education

Figure 5-8. Including the cis/trans molecules.

Oftentimes, viewing multiple molecules simultaneously can be important for comparing and contrasting them. We will show our cis and trans isomer molecules side by side so that we can easily see how they differ.

1. Simultaneously include (control + click or command + click) both the cis-2-pentene and the trans-2-pentene

Schrödinger Education

Schrödinger Education

6. Individual Exercises

For each pair of molecules:

1) Build the molecules using 2D sketcher in Maestro and Optimize their geometries by running Optimization Jaguar calculations. Attach screenshots of your optimized molecules tiled next to each other in the worksheet
2) Determine the stereochemical configuration using CIP rules
3) Determine whether the pair of molecules are identical, enantiomers, or diastereomers

Here is an example:

Molecule A \quad| Molecule B |
| :--- |
| 2) Molecule $\mathrm{A}:$ |
| (1S, 3R)-1-chloro-3-methylcyclopentane |
| Molecule B: |
| (1R, 2R)-1-chloro-3-methylcyclopentane |
| 3) Diastereomers because one chiral center |
| inverted while the other chiral center stayed |
| the same |

7. Conclusion and References

The overarching objective of this tutorial was to introduce or reinforce concepts about different types of stereoisomers. To better understand how pairs of stereoisomers differ from one another, we used Maestro to model the isomers in three dimensions. By using Maestro's computational tools, we learned to use the 2D Sketcher to conveniently build our molecules in 3D and how to optimize a structure's geometry using quantum mechanical DFT. Additionally, we changed the style of our molecules, applied labels to them, and arranged them in a tiled formation to easily compare a set of molecules.

For some related practice, proceed to explore other relevant tutorials:

- Introduction to Geometry Optimizations, Functionals, and Basis Sets

For further reading:

- Exploring potential energy surface for chemical reactions: An overview of some practical methods. DOI:10.1002/jcc. 10231
- Introduction to Computational Chemistry, 3rd Edition
- Essentials of Computational Chemistry: Theories and Models, 2nd Edition
- Molecular Modelling: Principles and Applications, 2nd Edition
- See the Jaguar help documentation

8. Glossary

Entry List - a simplified view of the Project Table that allows you to perform basic operations such as selection and inclusion

Included - the entry is represented in the Workspace, the circle in the In column is blue
Project Table - displays the contents of a project and is also an interface for performing operations on selected entries, viewing properties, and organizing structures and data

Recent actions - This is a list of your recent actions, which you can use to reopen a panel, displayed below the Browse row. (Right-click to delete.)

Scratch Project - a temporary project in which work is not saved. Closing a scratch project removes all current work and begins a new scratch project

Selected - (1) the atoms are chosen in the Workspace. These atoms are referred to as "the selection" or "the atom selection". Workspace operations are performed on the selected atoms.
(2) The entry is chosen in the Entry List (and Project Table) and the row for the entry is highlighted. Project operations are performed on all selected entries

Working Directory - the location that files are saved
Workspace - the 3D display area in the center of the main window, where molecular structures are displayed

2D Workspace - the 2D panel that opens from the "edit" dropdown that allows for the construction of molecules using a 2D sketcher

Tile - if multiple entries are included, included entries are displayed side by side in individual boxes rather than being overlaid in the same space

[^0]: Schrödinger Education

[^1]: Schrödinger Education
 23

