Source code for schrodinger.analysis.visanalysis.volumedata

# ----------------------------------------------------------------------------
# Name:
#
#   volumedata.py
#
# Purpose:
#
#   This file contains the implementation of the VolumeData class. This class
#   facilitates the handling of volume data (such as .vis/.ccp4 files) in
#   a logical manner from within Python.
#
# Copyright of:
#
#   Copyright Schrodinger, LLC. All rights reserved.
#
# Version:
#
#   Version         Author          Notes
#       1.0            DDR          Original Implementation
#
# Notes:
#
# ----------------------------------------------------------------------------

# ----------------------------------------------------------------------------
# Module imports.

import copy as copy

import numpy as np
import scipy.ndimage.interpolation as interpolation

from . import vdcoordinateframe as vdcoordinateframe
from . import vdexception as vdexception

# End of module imports.
# ----------------------------------------------------------------------------

# ----------------------------------------------------------------------------
# Global constants.

_X = 0
_Y = 1
_Z = 2

_BAD_DATA = "The data has the wrong shape."
_BAD_VD = "The VolumeData objects are not compatible."
_BAD_COORD = "Coordinate must be a 3-element array"

# End of global constants.
# ----------------------------------------------------------------------------


# ----------------------------------------------------------------------------
# Class definition:
#
#   VolumeData
#
# ----------------------------------------------------------------------------
[docs]class VolumeData(object): """ The VolumeData class is responsible for handling the underlying storage as well as marrying together the concepts of array-coordinates and world-coordinates. The class itself is a fairly simple aggregation of the Numpy array class (to handle the basic storage and provide a huge library of functionality) and the _VDCoordinateFrame class (to marry up the concept of array-coordinates and world-coordinates). """ # ------------------------------------------------------------------------
[docs] def __init__(self, N=None, resolution=None, origin=None): """ This function creates a new VolumeData object. The object represents a three-dimensional volume with the specified resolution, origin and dimensions. The underlying ``_VDCoordinateFrame`` is exposed via the CoordinateFrame property. :param N: The number of array-coordinates along the X, Y and Z axes respectively. :type N: `iterable< int, 3 >` :param resolution: The resolution of the X, Y and Z axes respectively. Specified in world-coordinate units :type resolution: `iterable< float, 3 >` :param origin: The origin of the X, Y and Z axes respectively. Specified in world-coordinates :type origin: `iterable< float, 3 >` """ self._coordinateFrame = \ vdcoordinateframe._VDCoordinateFrame(N, resolution, origin) self._data = np.zeros(N, dtype=np.float32)
# ------------------------------------------------------------------------ # Property definitions: def _get_CoordinateFrame(self): return self._coordinateFrame CoordinateFrame = property(_get_CoordinateFrame) # ------------------------------------------------------------------------
[docs] def IsCompatible(self, vd): """ This function can be used to test whether vd is compatible with this VolumeData. Compatible VolumeData objects have compatible coordinate-frames. :param vd: The volume-data to be tested for compatibility with this VolumeData :type vd: `VolumeData` :return: True if vd is compatible with this VolumeData :rtype: `bool` """ return self._coordinateFrame.IsCompatible(vd._coordinateFrame)
# ------------------------------------------------------------------------
[docs] def ToArrayCoordinate(self, world): """ Converts the specified world-coordinate to the corresponding array-coordinate. :param world: The world-coordinate to be converted X, Y, Z :type world: `iterable< float, 3>` :return: The array-coordinate corresponding to world. This need not be a valid array-coordinate :rtype: `iterable< float, 3 >` """ return self._coordinateFrame.ToArrayCoordinate(world)
# ------------------------------------------------------------------------
[docs] def ToArrayCoordinateL(self, worldCoordinates): """ Converts the specified set of world-coordinates to the corresponding array-coordinates. :param worldCoordinates: The set of world-coordinates to be converted :type worldCoordinates: `iterable< iterable< float, 3 > >` :return: The array-coordinates corresponding to worldCoordinates :rtype: `iterable< iterable< float, 3 > >` """ return self._coordinateFrame.ToArrayCoordinateL(worldCoordinates)
# ------------------------------------------------------------------------
[docs] def ToWorldCoordinate(self, array): """ Converts the specified array-coordinate to the corresponding world-coordinate. :param array: The array-coordinate to be converted X, Y, Z :type array: `iterable< float, 3 >` :return: The world-coordinate corresponding to array :rtype: `iterable< float, 3 >` """ return self._coordinateFrame.ToWorldCoordinate(array)
# ------------------------------------------------------------------------
[docs] def ToWorldCoordinateL(self, arrayCoordinates): """ Converts the specified set of array-coordinates to the corresponding world-coordinates. :param arrayCoordinates: The set of array-coordinates to be converted :type arrayCoordinates: `iterable< iterable< float, 3 > >` :return: The world-coordinates corresponding to arrayCoordinates :rtype: `iterable< iterable< float, 3 > >` """ return self._coordinateFrame.ToWorldCoordinateL(arrayCoordinates)
# ------------------------------------------------------------------------
[docs] def InBounds(self, world): """ Tests whether the world-coordinate corresponds to a position that is within the bounds of the array-coordinates. :param world: The world-coordinate to be tested X, Y, Z :type world: `iterable< float, 3 >` :return: True if the world-coordinate is in bounds. :rtype: `bool` """ return self._coordinateFrame.InBounds(world)
# ------------------------------------------------------------------------
[docs] def ArrayCoordinates(self): """ This function returns an iterator which allows the array-coordinates corresponding to this VolumeData to be traversed. The order of the traversal is not specified. The de-referenced iterator provides an object of the form iterable< int, 3 >, the X, Y and Z array-coordinates. :return: Array-coordinate iterator. :rtype: `iterator< iterable< int, 3 > >` """ return self._coordinateFrame.ArrayCoordinates()
# ------------------------------------------------------------------------
[docs] def getAllArrayCoordinates(self): """ This function returns an object of the class iterable< iterable< int, 3 > >. This contains all of the valid array-coordinates. The ordering of entries in this object is guaranteed to be the same as that returned by self.getAllWorldCoordinates(). :return: The array-coordinates :rtype: `iterable< iterable< int, 3 > >` """ return self._coordinateFrame.getAllArrayCoordinates()
# ------------------------------------------------------------------------
[docs] def WorldCoordinates(self): """ This function returns an iterator which allows the world-coordinates corresponding to this VolumeData to be traversed. The order of traversal is not specified. The de-referenced iterator provides an object of the form iterable< float, 3 >, the X, Y and Z world-coordinates. :return: World-coordinate iterator :rtype: `iterator< iterable< float, 3 > >` """ return self._coordinateFrame.WorldCoordinates()
# ------------------------------------------------------------------------
[docs] def getAllWorldCoordinates(self): """ This function returns an object of the class iterable< iterable< float, 3 > >. This contains all of the world-coordinates. The ordering of entries in this object is guaranteed to be the same as that returned by self.getAllArrayCoordinates(). :return: The world-coordinates :rtype: `iterable< iterable< float, 3 > >` """ return self._coordinateFrame.getAllWorldCoordinates()
# ------------------------------------------------------------------------
[docs] def Coordinates(self): """ This function returns an iterator which allows the array-coordinates and world-coordinates corresponding to this VolumeData to be traversed. The order of traversal is not specified. The de-referenced iterator returns an object of the form tuple< iterable< int, 3 >, iterable< float, 3 > >, the X, Y, Z coordinates of the array and world respectively. :return: Array and world-coordinate iterator :rtype: `iterator< tuple< iterable< int, 3 >, iterable< float, 3 > > >` """ return self._coordinateFrame.Coordinates()
# ------------------------------------------------------------------------
[docs] def getData(self): """ This function allows access to the underlying data. The object returned by this function may be used anywhere a Numpy array object would be used. This is the fastest method accessing values from this VolumeData object, however, the access is restricted to valid array-coordinates only. :return: The underlying volume-data :rtype: `numpy.array` """ return self._data
# ------------------------------------------------------------------------
[docs] def setData(self, data): """ This function allows the underlying data to be set. The function makes a copy of data. :param data: The data to be assigned to this VolumeData's underlying data. The size of this three-dimensional array should be the same as this VolumeData :type data: `numpy.array` """ if ((data.shape[_X] != self._coordinateFrame.N[_X]) or (data.shape[_Y] != self._coordinateFrame.N[_Y]) or (data.shape[_Z] != self._coordinateFrame.N[_Z])): raise vdexception.VDException(_BAD_DATA) self._data = copy.copy(data)
def __iadd__(self, rhs): """ __iadd__, __isub__, __imul__, __idiv__: These functions perform the standard mathematic operations on this VolumeData. :param rhs: If rhs is numerical the appropriate operation will be performed on every element of the data. If rhs is a VolumeData instance each element of this VolumeData will be modified with the corresponding element of rhs. This implies that the two VolumeData objects must be compatible. :type rhs: `VolumeData` or `numerical` """ if isinstance(rhs, VolumeData): if not self.IsCompatible(rhs): raise vdexception.VDException(_BAD_VD) self._data += rhs._data else: self._data += rhs return self def __isub__(self, rhs): """ see __iadd__ docstring """ if isinstance(rhs, VolumeData): if not self.IsCompatible(rhs): raise vdexception.VDException(_BAD_VD) self._data -= rhs._data else: self._data -= rhs return self def __imul__(self, rhs): """ see __iadd__ docstring """ if isinstance(rhs, VolumeData): if not self.IsCompatible(rhs): raise vdexception.VDException(_BAD_VD) self._data *= rhs._data else: self._data *= rhs return self def __idiv__(self, rhs): """ see __iadd__ docstring """ if isinstance(rhs, VolumeData): if not self.IsCompatible(rhs): raise vdexception.VDException(_BAD_VD) self._data /= rhs._data else: self._data /= rhs return self # ------------------------------------------------------------------------
[docs] def getAtArrayCoordinate(self, array, interpolationOrder=0, oobMethod="constant", oobConstant=0.0): """ This function is used to retrieve values from this VolumeData object using array-coordinates. The function is capable of retrieving values at invalid array-coordinates using a mixture of interpolation and OOB-handling. :param array: The array-coordinates to retrieve. Need not be valid array-coordinates :type array: `iterable< float, 3 >` :param interpolationOrder: The degree of interpolation to use when retrieving the values. 0-5 :type interpolationOrder: `int` :param oobMethod: What to do with requests that lie outside of the bounds of this VolumeData object. The options are "constant", which returns the value of oobConstant. "nearest" which returns the value of the nearest valid point or "wrap", which effectively tiles the data into an infinite repeating lattice. :type oobMethod: `string` :param oobConstant: Of the class float. The value to return if the request is OOB and the oobMethod is "constant" :type oobConstant: `float` :return: The value stored at the requested array-coordinate :rtype: `float` """ if len(array) != 3: raise vdexception.VDException(_BAD_COORD) # Annoyingly map_coordinates requires [ [ x ], [ y ], [ z ] ] # format, rather than [ x, y, z ], so we need a transpose. array2 = np.array(array).reshape(3, 1) return interpolation.map_coordinates(self._data, array2, order=interpolationOrder, mode=oobMethod, cval=oobConstant)
# ------------------------------------------------------------------------
[docs] def getAtArrayCoordinateL(self, arrayCoordinates, interpolationOrder=0, oobMethod="constant", oobConstant=0.0): """ This function can be used to retrieve a large number of values at specified array-coordinates. It is similar to the getAtArrayCoordinate function, however, in this case the array-coordinates are specified as a list rather than a single coordinate. :param arrayCoordinates: The array-coordinates whose values are to be retrieved :type arrayCoordinates: `iterable< iterable< float, 3 > >` :param interpolationOrder: The degree of interpolation to use when retrieving the values. 0-5 :type interpolationOrder: `int` :param oobMethod: What to do with requests that lie outside of the bounds of this VolumeData object. The options are "constant", which returns the value of oobConstant. "nearest" which returns the value of the nearest valid point or "wrap", which effectively tiles the data into an infinite repeating lattice. :type oobMethod: `string` :param oobConstant: Of the class float. The value to return if the request is OOB and the oobMethod is "constant" :type oobConstant: `float` :return: The value stored at the requested array-coordinates. The values are returned in an order that is equivalent to arrayCoordinates :rtype: `iterable< float >` """ if len(arrayCoordinates[0]) != 3: raise vdexception.VDException(_BAD_COORD) # Annoyingly map_coordinates requires [ [ x ], [ y ], [ z ] ] # format, rather than [ x, y, z ], so we need a transpose. arrayCoordinates2 = np.array(arrayCoordinates).transpose() return interpolation.map_coordinates(self._data, arrayCoordinates2, order=interpolationOrder, mode=oobMethod, cval=oobConstant)
# ------------------------------------------------------------------------
[docs] def getAtWorldCoordinate(self, world, interpolationOrder=0, oobMethod="constant", oobConstant=0.0): """ This function is used to retrieve values from this VolumeData object using world-coordinates. The function is capable of retrieving values at any world-coordinate using a mixture of interpolation and OOB-handling :param world: The world-coordinates to retrieve :type world: `iterable< float, 3 >` :param interpolationOrder: The degree of interpolation to use when retrieving the values. 0-5 :type interpolationOrder: `int` :param oobMethod: What to do with requests that lie outside of the bounds of this VolumeData object. The options are "constant", which returns the value of oobConstant. "nearest" which returns the value of the nearest valid point or "wrap", which effectively tiles the data into an infinite repeating lattice. :type oobMethod: `string` :param oobConstant: Of the class float. The value to return if the request is OOB and the oobMethod is "constant" :type oobConstant: `float` :return: The value stored at the requested world-coordinate :rtype: `float` """ array = self.ToArrayCoordinate(world) return self.getAtArrayCoordinate(array, interpolationOrder=interpolationOrder, oobMethod=oobMethod, oobConstant=oobConstant)
# ------------------------------------------------------------------------
[docs] def getAtWorldCoordinateL(self, worldCoordinates, interpolationOrder=0, oobMethod="constant", oobConstant=0.0): """ This function can be used to retrieve a large number of values at specified world-coordinates. It is similar to the getAtWorldCoordinate function, however, in this case the world-coordinates are specified as a list rather than a single coordinate. :param worldCoordinates: The world-coordinates whose values are to be retrieved :type worldCoordinates: `iterable< iterable< float, 3 > >` :param interpolationOrder: The degree of interpolation to use when retrieving the values. 0-5 :type interpolationOrder: `int` :param oobMethod: What to do with requests that lie outside of the bounds of this VolumeData object. The options are "constant", which returns the value of oobConstant. "nearest" which returns the value of the nearest valid point or "wrap", which effectively tiles the data into an infinite repeating lattice. :type oobMethod: `string` :param oobConstant: Of the class float. The value to return if the request is OOB and the oobMethod is "constant" :type oobConstant: `float` :return: The value stored at the requested world-coordinates. The values are returned in an order that is equivalent to worldCoordinates :rtype: `iterable< float >` """ arrayCoordinates = self.ToArrayCoordinateL(worldCoordinates) return self.getAtArrayCoordinateL(arrayCoordinates, interpolationOrder=interpolationOrder, oobMethod=oobMethod, oobConstant=oobConstant)
# End of class definition: VolumeData # ---------------------------------------------------------------------------- # End of file: volumedata.py # ----------------------------------------------------------------------------