Source code for schrodinger.application.matsci.gsas.GSASIIlattice

# -*- coding: utf-8 -*-
'''
# Third-party code. No Schrodinger Copyright.

*GSASIIlattice: Unit cells*
---------------------------

Perform lattice-related computations

Note that *G* is the reciprocal lattice tensor, and *g* is its inverse,
:math:`G = g^{-1}`, where

  .. math::

   g = \\left( \\begin{matrix}
   a^2 & a b\\cos gamma & a c\\cos\\beta \\\\
   a b\\cos\\gamma & b^2 & b c  cos\\alpha \\\\
   a c\\cos\\beta &  b c \\cos\\alpha & c^2
   \\end{matrix}\\right)

The "*A* tensor" terms are defined as
:math:`A = (\\begin{matrix} G_{11} & G_{22} & G_{33} & 2G_{12} & 2G_{13} & 2G_{23}\\end{matrix})` and *A* can be used in this fashion:
:math:`d^* = sqrt {A_1 h^2 + A_2 k^2 + A_3 l^2 + A_4 hk + A_5 hl + A_6 kl}`, where
*d* is the d-spacing, and :math:`d^*` is the reciprocal lattice spacing,
:math:`Q = 2 \\pi d^* = 2 \\pi / d`
'''
########### SVN repository information ###################
# $Date: 2019-04-11 16:59:48 -0400 (Thu, 11 Apr 2019) $
# $Author: vondreele $
# $Revision: 3888 $
# $URL: https://subversion.xray.aps.anl.gov/pyGSAS/trunk/GSASIIlattice.py $
# $Id: GSASIIlattice.py 3888 2019-04-11 20:59:48Z vondreele $
########### SVN repository information ###################
# flake8: noqa

import copy
import math
import random as ran
import sys

import numpy as np
import numpy.linalg as nl

from . import GSASIIElem as G2elem
from . import GSASIImath as G2mth
from . import GSASIIspc as G2spc

# trig functions in degrees
sind = lambda x: np.sin(x * np.pi / 180.)
asind = lambda x: 180. * np.arcsin(x) / np.pi
tand = lambda x: np.tan(x * np.pi / 180.)
atand = lambda x: 180. * np.arctan(x) / np.pi
atan2d = lambda y, x: 180. * np.arctan2(y, x) / np.pi
cosd = lambda x: np.cos(x * np.pi / 180.)
acosd = lambda x: 180. * np.arccos(x) / np.pi
rdsq2d = lambda x: 1.0 / np.sqrt(x)
rpd = np.pi / 180.
RSQ2PI = 1. / np.sqrt(2. * np.pi)
SQ2 = np.sqrt(2.)
RSQPI = 1. / np.sqrt(np.pi)
R2pisq = 1. / (2. * np.pi**2)
nxs = np.newaxis


[docs]def sec2HMS(sec): """Convert time in sec to H:M:S string :param sec: time in seconds :return: H:M:S string (to nearest 100th second) """ H = int(sec // 3600) M = int(sec // 60 - H * 60) S = sec - 3600 * H - 60 * M return '%d:%2d:%.2f' % (H, M, S)
[docs]def rotdMat(angle, axis=0): """Prepare rotation matrix for angle in degrees about axis(=0,1,2) :param angle: angle in degrees :param axis: axis (0,1,2 = x,y,z) about which for the rotation :return: rotation matrix - 3x3 numpy array """ if axis == 2: return np.array([[cosd(angle), -sind(angle), 0], [sind(angle), cosd(angle), 0], [0, 0, 1]]) elif axis == 1: return np.array([[cosd(angle), 0, -sind(angle)], [0, 1, 0], [sind(angle), 0, cosd(angle)]]) else: return np.array([[1, 0, 0], [0, cosd(angle), -sind(angle)], [0, sind(angle), cosd(angle)]])
[docs]def rotdMat4(angle, axis=0): """Prepare rotation matrix for angle in degrees about axis(=0,1,2) with scaling for OpenGL :param angle: angle in degrees :param axis: axis (0,1,2 = x,y,z) about which for the rotation :return: rotation matrix - 4x4 numpy array (last row/column for openGL scaling) """ Mat = rotdMat(angle, axis) return np.concatenate((np.concatenate((Mat, [[0], [0], [0]]), axis=1), [ [0, 0, 0, 1], ]), axis=0)
[docs]def fillgmat(cell): """Compute lattice metric tensor from unit cell constants :param cell: tuple with a,b,c,alpha, beta, gamma (degrees) :return: 3x3 numpy array """ a, b, c, alp, bet, gam = cell g = np.array([[a * a, a * b * cosd(gam), a * c * cosd(bet)], [a * b * cosd(gam), b * b, b * c * cosd(alp)], [a * c * cosd(bet), b * c * cosd(alp), c * c]]) return g
[docs]def cell2Gmat(cell): """Compute real and reciprocal lattice metric tensor from unit cell constants :param cell: tuple with a,b,c,alpha, beta, gamma (degrees) :return: reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays) """ g = fillgmat(cell) G = nl.inv(g) return G, g
[docs]def A2Gmat(A, inverse=True): """Fill real & reciprocal metric tensor (G) from A. :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] :param bool inverse: if True return both G and g; else just G :return: reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays) """ G = np.array([[A[0], A[3] / 2., A[4] / 2.], [A[3] / 2., A[1], A[5] / 2.], [A[4] / 2., A[5] / 2., A[2]]]) if inverse: g = nl.inv(G) return G, g else: return G
[docs]def Gmat2A(G): """Extract A from reciprocal metric tensor (G) :param G: reciprocal maetric tensor (3x3 numpy array :return: A = [G11,G22,G33,2*G12,2*G13,2*G23] """ return [G[0][0], G[1][1], G[2][2], 2. * G[0][1], 2. * G[0][2], 2. * G[1][2]]
[docs]def cell2A(cell): """Obtain A = [G11,G22,G33,2*G12,2*G13,2*G23] from lattice parameters :param cell: [a,b,c,alpha,beta,gamma] (degrees) :return: G reciprocal metric tensor as 3x3 numpy array """ G, g = cell2Gmat(cell) return Gmat2A(G)
[docs]def A2cell(A): """Compute unit cell constants from A :param A: [G11,G22,G33,2*G12,2*G13,2*G23] G - reciprocal metric tensor :return: a,b,c,alpha, beta, gamma (degrees) - lattice parameters """ G, g = A2Gmat(A) return Gmat2cell(g)
[docs]def Gmat2cell(g): """Compute real/reciprocal lattice parameters from real/reciprocal metric tensor (g/G) The math works the same either way. :param g (or G): real (or reciprocal) metric tensor 3x3 array :return: a,b,c,alpha, beta, gamma (degrees) (or a*,b*,c*,alpha*,beta*,gamma* degrees) """ oldset = np.seterr('raise') a = np.sqrt(max(0, g[0][0])) b = np.sqrt(max(0, g[1][1])) c = np.sqrt(max(0, g[2][2])) alp = acosd(g[2][1] / (b * c)) bet = acosd(g[2][0] / (a * c)) gam = acosd(g[0][1] / (a * b)) np.seterr(**oldset) return a, b, c, alp, bet, gam
[docs]def invcell2Gmat(invcell): """Compute real and reciprocal lattice metric tensor from reciprocal unit cell constants :param invcell: [a*,b*,c*,alpha*, beta*, gamma*] (degrees) :return: reciprocal (G) & real (g) metric tensors (list of two 3x3 arrays) """ G = fillgmat(invcell) g = nl.inv(G) return G, g
[docs]def cellDijFill(pfx, phfx, SGData, parmDict): '''Returns the filled-out reciprocal cell (A) terms from the parameter dictionaries corrected for Dij. :param str pfx: parameter prefix ("n::", where n is a phase number) :param dict SGdata: a symmetry object :param dict parmDict: a dictionary of parameters :returns: A,sigA where each is a list of six terms with the A terms ''' if SGData['SGLaue'] in [ '-1', ]: A = [ parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'], parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], parmDict[pfx + 'A3'] + parmDict[phfx + 'D12'], parmDict[pfx + 'A4'] + parmDict[phfx + 'D13'], parmDict[pfx + 'A5'] + parmDict[phfx + 'D23'] ] elif SGData['SGLaue'] in [ '2/m', ]: if SGData['SGUniq'] == 'a': A = [ parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'], parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], 0, 0, parmDict[pfx + 'A5'] + parmDict[phfx + 'D23'] ] elif SGData['SGUniq'] == 'b': A = [ parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'], parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], 0, parmDict[pfx + 'A4'] + parmDict[phfx + 'D13'], 0 ] else: A = [ parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'], parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], parmDict[pfx + 'A3'] + parmDict[phfx + 'D12'], 0, 0 ] elif SGData['SGLaue'] in [ 'mmm', ]: A = [ parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A1'] + parmDict[phfx + 'D22'], parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], 0, 0, 0 ] elif SGData['SGLaue'] in ['4/m', '4/mmm']: A = [ parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], 0, 0, 0 ] elif SGData['SGLaue'] in ['6/m', '6/mmm', '3m1', '31m', '3']: A = [ parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A2'] + parmDict[phfx + 'D33'], parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], 0, 0 ] elif SGData['SGLaue'] in ['3R', '3mR']: A = [ parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A3'] + parmDict[phfx + 'D23'], parmDict[pfx + 'A3'] + parmDict[phfx + 'D23'], parmDict[pfx + 'A3'] + parmDict[phfx + 'D23'] ] elif SGData['SGLaue'] in ['m3m', 'm3']: A = [ parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], parmDict[pfx + 'A0'] + parmDict[phfx + 'D11'], 0, 0, 0 ] return A
[docs]def prodMGMT(G, Mat): '''Transform metric tensor by matrix :param G: array metric tensor :param Mat: array transformation matrix :return: array new metric tensor ''' return np.inner(np.inner(Mat, G), Mat) #right
# return np.inner(Mat,np.inner(Mat,G)) #right # return np.inner(np.inner(G,Mat).T,Mat) #right # return np.inner(Mat,np.inner(G,Mat).T) #right
[docs]def TransformCell(cell, Trans): '''Transform lattice parameters by matrix :param cell: list a,b,c,alpha,beta,gamma,(volume) :param Trans: array transformation matrix :return: array transformed a,b,c,alpha,beta,gamma,volume ''' newCell = np.zeros(7) g = cell2Gmat(cell)[1] newg = prodMGMT(g, Trans) newCell[:6] = Gmat2cell(newg) newCell[6] = calc_V(cell2A(newCell[:6])) return newCell
[docs]def TransformXYZ(XYZ, Trans, Vec): return np.inner(XYZ, Trans) + Vec
[docs]def TransformU6(U6, Trans): Uij = np.inner(Trans, np.inner(U6toUij(U6), Trans).T) / nl.det(Trans) return UijtoU6(Uij)
[docs]def ExpandCell(Atoms, atCodes, cx, Trans): Unit = [int(max(abs(np.array(unit))) - 1) for unit in Trans.T] for i, unit in enumerate(Unit): if unit > 0: for j in range(unit): moreAtoms = copy.deepcopy(Atoms) moreCodes = [] for atom, code in zip(moreAtoms, atCodes): atom[cx + i] += 1. if '+' in code: cell = list(eval(code.split('+')[1])) ops = code.split('+')[0] else: cell = [0, 0, 0] ops = code cell[i] += 1 moreCodes.append('%s+%d,%d,%d' % (ops, cell[0], cell[1], cell[2])) Atoms += moreAtoms atCodes += moreCodes return Atoms, atCodes
[docs]def TransformPhase(oldPhase, newPhase, Trans, Uvec, Vvec, ifMag): '''Transform atoms from oldPhase to newPhase M' is inv(M) does X' = M(X-U)+V transformation for coordinates and U' = MUM/det(M) for anisotropic thermal parameters :param oldPhase: dict G2 phase info for old phase :param newPhase: dict G2 phase info for new phase; with new cell & space group atoms are from oldPhase & will be transformed :param Trans: lattice transformation matrix M :param Uvec: array parent coordinates transformation vector U :param Vvec: array child coordinate transformation vector V :param ifMag: bool True if convert to magnetic phase; if True all nonmagnetic atoms will be removed :return: newPhase dict modified G2 phase info :return: atCodes list atom transformation codes ''' cx, ct, cs, cia = oldPhase['General']['AtomPtrs'] cm = 0 if oldPhase['General']['Type'] == 'magnetic': cm = cx + 4 oAmat, oBmat = cell2AB(oldPhase['General']['Cell'][1:7]) nAmat, nBmat = cell2AB(newPhase['General']['Cell'][1:7]) SGData = newPhase['General']['SGData'] invTrans = nl.inv(Trans) newAtoms, atCodes = FillUnitCell(oldPhase) newAtoms, atCodes = ExpandCell(newAtoms, atCodes, cx, Trans) if ifMag: cia += 3 cs += 3 newPhase['General']['Type'] = 'magnetic' newPhase['General']['AtomPtrs'] = [cx, ct, cs, cia] magAtoms = [] magatCodes = [] Landeg = 2.0 for iat, atom in enumerate(newAtoms): if len(G2elem.GetMFtable([ atom[ct], ], [ Landeg, ])): magAtoms.append(atom[:cx + 4] + [0., 0., 0.] + atom[cx + 4:]) magatCodes.append(atCodes[iat]) newAtoms = magAtoms atCodes = magatCodes newPhase['Draw Atoms'] = [] for atom in newAtoms: atom[cx:cx + 3] = TransformXYZ(atom[cx:cx + 3] + Uvec, invTrans.T, Vvec) % 1. if atom[cia] == 'A': atom[cia + 2:cia + 8] = TransformU6(atom[cia + 2:cia + 8], Trans) atom[cs:cs + 2] = G2spc.SytSym(atom[cx:cx + 3], SGData)[:2] atom[cia + 8] = ran.randint(0, sys.maxsize) if cm: mag = np.sqrt(np.sum(np.array(atom[cm:cm + 3])**2)) if mag: mom = np.inner(np.array(atom[cm:cm + 3]), oBmat) mom = np.inner(mom, invTrans) mom = np.inner(mom, nAmat) mom /= np.sqrt(np.sum(mom**2)) atom[cm:cm + 3] = mom * mag newPhase['Atoms'] = newAtoms newPhase['Atoms'], atCodes = GetUnique(newPhase, atCodes) newPhase['Drawing'] = [] newPhase['ranId'] = ran.randint(0, sys.maxsize) return newPhase, atCodes
[docs]def FindNonstandard(controls, Phase): ''' Find nonstandard setting of magnetic cell that aligns with parent nuclear cell :param controls: list unit cell indexing controls :param Phase: dict new magnetic phase data (NB:not G2 phase construction); modified here :return: None ''' abc = np.eye(3) cba = np.rot90(np.eye(3)) cba[1, 1] *= -1 #makes c-ba Mats = { 'abc': abc, 'cab': np.roll(abc, 2, 1), 'bca': np.roll(abc, 1, 1), 'acb': np.roll(cba, 1, 1), 'bac': np.roll(cba, 2, 1), 'cba': cba } #ok BNS = { 'A': { 'abc': 'A', 'cab': 'C', 'bca': 'B', 'acb': 'A', 'bac': 'B', 'cba': 'C' }, 'B': { 'abc': 'B', 'cab': 'A', 'bca': 'C', 'acb': 'C', 'bac': 'A', 'cba': 'B' }, 'C': { 'abc': 'C', 'cab': 'B', 'bca': 'A', 'acb': 'B', 'bac': 'C', 'cba': 'A' }, 'a': { 'abc': 'a', 'cab': 'c', 'bca': 'b', 'acb': 'a', 'bac': 'b', 'cba': 'c' }, #Ok 'b': { 'abc': 'b', 'cab': 'a', 'bca': 'c', 'acb': 'c', 'bac': 'a', 'cba': 'b' }, 'c': { 'abc': 'c', 'cab': 'b', 'bca': 'a', 'acb': 'b', 'bac': 'c', 'cba': 'a' }, 'S': { 'abc': 'S', 'cab': 'S', 'bca': 'S', 'acb': 'S', 'bac': 'S', 'cba': 'S' }, 'I': { 'abc': 'I', 'cab': 'I', 'bca': 'I', 'acb': 'I', 'bac': 'I', 'cba': 'I' }, } Trans = Phase['Trans'] Uvec = Phase['Uvec'] SGData = Phase['SGData'] MSG = SGData.get('MagSpGrp', SGData['SpGrp']).split(' ', 1) MSG[0] += ' ' bns = '' if '_' in MSG[0]: bns = MSG[0][2] spn = SGData.get('SGSpin', []) if 'ortho' in SGData['SGSys']: lattSym = G2spc.getlattSym(Trans) SpGrp = SGData['SpGrp'] NTrans = np.inner(Mats[lattSym].T, Trans.T) #ok if len(spn): spn[1:4] = np.inner(np.abs(nl.inv(Mats[lattSym])), spn[1:4]) #ok SGsym = G2spc.getlattSym(nl.inv(Mats[lattSym])) if lattSym != 'abc': NSG = G2spc.altSettingOrtho[SpGrp][SGsym].replace("'", '').split(' ') if ' '.join(NSG) in [ 'P 2 21 2', ]: Uvec[1] += .25 elif ' '.join(NSG) in [ 'P 21 2 2', ]: Uvec[0] += .25 elif ' '.join(NSG) in [ 'P 2 2 21', ]: Uvec[2] += .25 Bns = '' if bns: Bns = BNS[bns][lattSym] NSG[0] += '_' + Bns + ' ' elif len(spn): for ifld in [1, 2, 3]: if spn[ifld] < 0: NSG[ifld] += "'" Nresult = [''.join(NSG) + ' ', Bns] return Nresult, Uvec, NTrans else: return None elif 'mono' in SGData[ 'SGSys']: # and not 'P_A' in Phase['Name']: #skip the one that doesn't work newcell = TransformCell(controls[6:12], Trans) MatsA = np.array([[1., 0., 0.], [0., 1., 0.], [1., 0, 1.]]) MatsB = np.array([[1., 0., 0.], [0., 1., 0.], [-1., 0, 1.]]) if not 70. < newcell[4] < 110.: MSG[1] = MSG[1].replace('c', 'n') MSG[0] = MSG[0].replace('C_c', 'C_B').replace('P_A', 'P ') if '_' in MSG[0]: bns = MSG[0][2] if newcell[4] > 110.: if newcell[2] > newcell[0]: Mats = MatsA else: MSG[1] = MSG[1].replace('n', 'c') MSG[0] = MSG[0].replace('C ', 'I ') Mats = MatsA.T elif newcell[4] < 70.: if newcell[2] > newcell[0]: Mats = MatsB else: MSG[1] = MSG[1].replace('n', 'c') MSG[0] = MSG[0].replace('C ', 'I ') Mats = MatsB.T Nresult = [' '.join(MSG) + ' ', bns] NTrans = np.inner(Mats, Trans.T) return Nresult, Uvec, NTrans return None
[docs]def makeBilbaoPhase(result, uvec, trans, ifMag=False): phase = {} phase['Name'] = result[0].strip() phase['Uvec'] = uvec phase['Trans'] = trans phase['Keep'] = False phase['Use'] = False phase['aType'] = '' SpGp = result[0].replace("'", '') SpGrp = G2spc.StandardizeSpcName(SpGp) phase['SGData'] = G2spc.SpcGroup(SpGrp)[1] if ifMag: BNSlatt = phase['SGData']['SGLatt'] if not result[1]: phase['SGData']['SGSpin'] = G2spc.GetSGSpin(phase['SGData'], result[0]) phase['SGData']['GenSym'], phase['SGData'][ 'GenFlg'], BNSsym = G2spc.GetGenSym(phase['SGData']) if result[1]: BNSlatt += '_' + result[1] if 'P_S' in BNSlatt: BNSlatt = 'P_c' #triclinic fix phase['SGData']['BNSlattsym'] = [BNSlatt, BNSsym[BNSlatt]] G2spc.ApplyBNSlatt(phase['SGData'], phase['SGData']['BNSlattsym']) phase['SGData']['SpnFlp'] = G2spc.GenMagOps(phase['SGData'])[1] phase['SGData']['MagSpGrp'] = G2spc.MagSGSym(phase['SGData']) return phase
[docs]def FillUnitCell(Phase): Atoms = copy.deepcopy(Phase['Atoms']) atomData = [] atCodes = [] SGData = Phase['General']['SGData'] SpnFlp = SGData.get('SpnFlp', []) Amat, Bmat = cell2AB(Phase['General']['Cell'][1:7]) cx, ct, cs, cia = Phase['General']['AtomPtrs'] cm = 0 if Phase['General']['Type'] == 'magnetic': cm = cx + 4 for iat, atom in enumerate(Atoms): XYZ = np.array(atom[cx:cx + 3]) xyz = XYZ % 1. if atom[cia] == 'A': Uij = atom[cia + 2:cia + 8] result = G2spc.GenAtom(xyz, SGData, False, Uij, True) for item in result: if item[0][2] >= .95: item[0][2] -= 1. atom[cx:cx + 3] = item[0] atom[cia + 2:cia + 8] = item[1] if cm: Opr = abs(item[2]) % 100 M = SGData['SGOps'][Opr - 1][0] opNum = G2spc.GetOpNum(item[2], SGData) mom = np.inner(np.array(atom[cm:cm + 3]), Bmat) atom[cm:cm + 3] = np.inner(np.inner( mom, M), Amat) * nl.det(M) * SpnFlp[opNum - 1] atCodes.append('%d:%s' % (iat, str(item[2]))) atomData.append(atom[:cia + 9]) #not SS stuff else: result = G2spc.GenAtom(xyz, SGData, False, Move=True) for item in result: if item[0][2] >= .95: item[0][2] -= 1. atom[cx:cx + 3] = item[0] if cm: Opr = abs(item[1]) % 100 M = SGData['SGOps'][Opr - 1][0] opNum = G2spc.GetOpNum(item[1], SGData) mom = np.inner(np.array(atom[cm:cm + 3]), Bmat) atom[cm:cm + 3] = np.inner(np.inner( mom, M), Amat) * nl.det(M) * SpnFlp[opNum - 1] atCodes.append('%d:%s' % (iat, str(item[1]))) atomData.append(atom[:cia + 9]) #not SS stuff return atomData, atCodes
[docs]def GetUnique(Phase, atCodes): def noDuplicate(xyzA, XYZ): if True in [ np.allclose(xyzA % 1., xyzB % 1., atol=0.0002) for xyzB in XYZ ]: return False return True cx, ct = Phase['General']['AtomPtrs'][:2] SGData = Phase['General']['SGData'] Atoms = Phase['Atoms'] Ind = len(Atoms) newAtoms = [] newAtCodes = [] Indx = {} XYZ = {} for ind in range(Ind): XYZ[ind] = np.array(Atoms[ind][cx:cx + 3]) % 1. Indx[ind] = True for ind in range(Ind): if Indx[ind]: xyz = XYZ[ind] for jnd in range(Ind): if Atoms[ind][ct - 1] == Atoms[jnd][ct - 1]: if ind != jnd and Indx[jnd]: Equiv = G2spc.GenAtom(XYZ[jnd], SGData, Move=True) xyzs = np.array([equiv[0] for equiv in Equiv]) Indx[jnd] = noDuplicate(xyz, xyzs) Ind = [] for ind in Indx: if Indx[ind]: newAtoms.append(Atoms[ind]) newAtCodes.append(atCodes[ind]) return newAtoms, newAtCodes
[docs]def calc_rVsq(A): """Compute the square of the reciprocal lattice volume (1/V**2) from A' """ G, g = A2Gmat(A) rVsq = nl.det(G) if rVsq < 0: return 1 return rVsq
[docs]def calc_rV(A): """Compute the reciprocal lattice volume (V*) from A """ return np.sqrt(calc_rVsq(A))
[docs]def calc_V(A): """Compute the real lattice volume (V) from A """ return 1. / calc_rV(A)
[docs]def A2invcell(A): """Compute reciprocal unit cell constants from A returns tuple with a*,b*,c*,alpha*, beta*, gamma* (degrees) """ G, g = A2Gmat(A) return Gmat2cell(G)
[docs]def Gmat2AB(G): """Computes orthogonalization matrix from reciprocal metric tensor G :returns: tuple of two 3x3 numpy arrays (A,B) * A for crystal to Cartesian transformations (A*x = np.inner(A,x) = X) * B (= inverse of A) for Cartesian to crystal transformation (B*X = np.inner(B,X) = x) """ # cellstar = Gmat2cell(G) g = nl.inv(G) cell = Gmat2cell(g) # A = np.zeros(shape=(3,3)) return cell2AB(cell)
# # from Giacovazzo (Fundamentals 2nd Ed.) p.75 # A[0][0] = cell[0] # a # A[0][1] = cell[1]*cosd(cell[5]) # b cos(gamma) # A[0][2] = cell[2]*cosd(cell[4]) # c cos(beta) # A[1][1] = cell[1]*sind(cell[5]) # b sin(gamma) # A[1][2] = -cell[2]*cosd(cellstar[3])*sind(cell[4]) # - c cos(alpha*) sin(beta) # A[2][2] = 1./cellstar[2] # 1/c* # B = nl.inv(A) # return A,B
[docs]def cell2AB(cell): """Computes orthogonalization matrix from unit cell constants :param tuple cell: a,b,c, alpha, beta, gamma (degrees) :returns: tuple of two 3x3 numpy arrays (A,B) A for crystal to Cartesian transformations A*x = np.inner(A,x) = X B (= inverse of A) for Cartesian to crystal transformation B*X = np.inner(B,X) = x """ G, g = cell2Gmat(cell) cellstar = Gmat2cell(G) A = np.zeros(shape=(3, 3)) # from Giacovazzo (Fundamentals 2nd Ed.) p.75 A[0][0] = cell[0] # a A[0][1] = cell[1] * cosd(cell[5]) # b cos(gamma) A[0][2] = cell[2] * cosd(cell[4]) # c cos(beta) A[1][1] = cell[1] * sind(cell[5]) # b sin(gamma) A[1][2] = -cell[2] * cosd(cellstar[3]) * sind( cell[4]) # - c cos(alpha*) sin(beta) A[2][2] = 1. / cellstar[2] # 1/c* B = nl.inv(A) return A, B
[docs]def HKL2SpAng(H, cell, SGData): """Computes spherical coords for hkls; view along 001 :param array H: arrays of hkl :param tuple cell: a,b,c, alpha, beta, gamma (degrees) :param dict SGData: space group dictionary :returns: arrays of r,phi,psi (radius,inclination,azimuth) about 001 """ A, B = cell2AB(cell) xH = np.inner(B.T, H) r = np.sqrt(np.sum(xH**2, axis=0)) phi = acosd(xH[2] / r) psi = atan2d(xH[1], xH[0]) phi = np.where(phi > 90., 180. - phi, phi) # GSASIIpath.IPyBreak() return r, phi, psi
[docs]def U6toUij(U6): """Fill matrix (Uij) from U6 = [U11,U22,U33,U12,U13,U23] NB: there is a non numpy version in GSASIIspc: U2Uij :param list U6: 6 terms of u11,u22,... :returns: Uij - numpy [3][3] array of uij """ U = np.array([[U6[0], U6[3], U6[4]], [U6[3], U6[1], U6[5]], [U6[4], U6[5], U6[2]]]) return U
[docs]def UijtoU6(U): """Fill vector [U11,U22,U33,U12,U13,U23] from Uij NB: there is a non numpy version in GSASIIspc: Uij2U """ U6 = np.array([U[0][0], U[1][1], U[2][2], U[0][1], U[0][2], U[1][2]]) return U6
[docs]def betaij2Uij(betaij, G): """ Convert beta-ij to Uij tensors :param beta-ij - numpy array [beta-ij] :param G: reciprocal metric tensor :returns: Uij: numpy array [Uij] """ ast = np.sqrt(np.diag(G)) #a*, b*, c* Mast = np.multiply.outer(ast, ast) return R2pisq * UijtoU6(U6toUij(betaij) / Mast)
[docs]def Uij2betaij(Uij, G): """ Convert Uij to beta-ij tensors -- stub for eventual completion :param Uij: numpy array [Uij] :param G: reciprocal metric tensor :returns: beta-ij - numpy array [beta-ij] """ pass
[docs]def cell2GS(cell): ''' returns Uij to betaij conversion matrix''' G, g = cell2Gmat(cell) GS = G GS[0][1] = GS[1][0] = math.sqrt(GS[0][0] * GS[1][1]) GS[0][2] = GS[2][0] = math.sqrt(GS[0][0] * GS[2][2]) GS[1][2] = GS[2][1] = math.sqrt(GS[1][1] * GS[2][2]) return GS
[docs]def Uij2Ueqv(Uij, GS, Amat): ''' returns 1/3 trace of diagonalized U matrix''' U = np.multiply(U6toUij(Uij), GS) U = np.inner(Amat, np.inner(U, Amat).T) E, R = nl.eigh(U) return np.sum(E) / 3.
[docs]def CosAngle(U, V, G): """ calculate cos of angle between U & V in generalized coordinates defined by metric tensor G :param U: 3-vectors assume numpy arrays, can be multiple reflections as (N,3) array :param V: 3-vectors assume numpy arrays, only as (3) vector :param G: metric tensor for U & V defined space assume numpy array :returns: cos(phi) """ u = (U.T / np.sqrt(np.sum(np.inner(U, G) * U, axis=1))).T v = V / np.sqrt(np.inner(V, np.inner(G, V))) cosP = np.inner(u, np.inner(G, v)) return cosP
[docs]def CosSinAngle(U, V, G): """ calculate sin & cos of angle between U & V in generalized coordinates defined by metric tensor G :param U: 3-vectors assume numpy arrays :param V: 3-vectors assume numpy arrays :param G: metric tensor for U & V defined space assume numpy array :returns: cos(phi) & sin(phi) """ u = U / np.sqrt(np.inner(U, np.inner(G, U))) v = V / np.sqrt(np.inner(V, np.inner(G, V))) cosP = np.inner(u, np.inner(G, v)) sinP = np.sqrt(max(0.0, 1.0 - cosP**2)) return cosP, sinP
[docs]def criticalEllipse(prob): """ Calculate critical values for probability ellipsoids from probability """ if not (0.01 <= prob < 1.0): return 1.54 coeff = np.array([ 6.44988E-09, 4.16479E-07, 1.11172E-05, 1.58767E-04, 0.00130554, 0.00604091, 0.0114921, -0.040301, -0.6337203, 1.311582 ]) llpr = math.log(-math.log(prob)) return np.polyval(coeff, llpr)
[docs]def CellBlock(nCells): """ Generate block of unit cells n*n*n on a side; [0,0,0] centered, n = 2*nCells+1 currently only works for nCells = 0 or 1 (not >1) """ if nCells: N = 2 * nCells + 1 N2 = N * N N3 = N * N * N cellArray = [] A = np.array(range(N3)) cellGen = np.array([A // N2 - 1, A // N % N - 1, A % N - 1]).T for cell in cellGen: cellArray.append(cell) return cellArray else: return [0, 0, 0]
[docs]def CellAbsorption(ElList, Volume): '''Compute unit cell absorption :param dict ElList: dictionary of element contents including mu and number of atoms be cell :param float Volume: unit cell volume :returns: mu-total/Volume ''' muT = 0 for El in ElList: muT += ElList[El]['mu'] * ElList[El]['FormulaNo'] return muT / Volume
#Permutations and Combinations # Four routines: combinations,uniqueCombinations, selections & permutations #These taken from Python Cookbook, 2nd Edition. 19.15 p724-726 # def _combinators(_handle, items, n): """ factored-out common structure of all following combinators """ if n == 0: yield [] return for i, item in enumerate(items): this_one = [item] for cc in _combinators(_handle, _handle(items, i), n - 1): yield this_one + cc
[docs]def combinations(items, n): """ take n distinct items, order matters """ def skipIthItem(items, i): return items[:i] + items[i + 1:] return _combinators(skipIthItem, items, n)
[docs]def uniqueCombinations(items, n): """ take n distinct items, order is irrelevant """ def afterIthItem(items, i): return items[i + 1:] return _combinators(afterIthItem, items, n)
[docs]def selections(items, n): """ take n (not necessarily distinct) items, order matters """ def keepAllItems(items, i): return items return _combinators(keepAllItems, items, n)
[docs]def permutations(items): """ take all items, order matters """ return combinations(items, len(items))
#reflection generation routines #for these: H = [h,k,l]; A is as used in calc_rDsq; G - inv metric tensor, g - metric tensor; # cell - a,b,c,alp,bet,gam in A & deg
[docs]def Pos2dsp(Inst, pos): ''' convert powder pattern position (2-theta or TOF, musec) to d-spacing ''' if 'C' in Inst['Type'][0] or 'PKS' in Inst['Type'][0]: wave = G2mth.getWave(Inst) return wave / (2.0 * sind((pos - Inst.get('Zero', [0, 0])[1]) / 2.0)) else: #'T'OF - ignore difB return TOF2dsp(Inst, pos)
[docs]def TOF2dsp(Inst, Pos): ''' convert powder pattern TOF, musec to d-spacing by successive approximation Pos can be numpy array ''' def func(d, pos, Inst): return (pos - Inst['difA'][1] * d**2 - Inst['Zero'][1] - Inst['difB'][1] / d) / Inst['difC'][1] dsp0 = np.ones_like(Pos) N = 0 while True: #successive approximations dsp = func(dsp0, Pos, Inst) if np.allclose(dsp, dsp0, atol=0.000001): return dsp dsp0 = dsp N += 1 if N > 10: return dsp
[docs]def Dsp2pos(Inst, dsp): ''' convert d-spacing to powder pattern position (2-theta or TOF, musec) ''' if 'C' in Inst['Type'][0] or 'PKS' in Inst['Type'][0]: wave = G2mth.getWave(Inst) val = min(0.995, wave / (2. * dsp)) #set max at 168deg pos = 2.0 * asind(val) + Inst.get('Zero', [0, 0])[1] else: #'T'OF pos = Inst['difC'][1] * dsp + Inst['Zero'][1] + Inst['difA'][ 1] * dsp**2 + Inst.get('difB', [0, 0, False])[1] / dsp return pos
[docs]def getPeakPos(dataType, parmdict, dsp): ''' convert d-spacing to powder pattern position (2-theta or TOF, musec) ''' if 'C' in dataType: pos = 2.0 * asind(parmdict['Lam'] / (2. * dsp)) + parmdict['Zero'] else: #'T'OF pos = parmdict['difC'] * dsp + parmdict['difA'] * dsp**2 + parmdict[ 'difB'] / dsp + parmdict['Zero'] return pos
[docs]def calc_rDsq(H, A): 'needs doc string' rdsq = H[0] * H[0] * A[0] + H[1] * H[1] * A[1] + H[2] * H[2] * A[2] + H[ 0] * H[1] * A[3] + H[0] * H[2] * A[4] + H[1] * H[2] * A[5] return rdsq
[docs]def calc_rDsq2(H, G): 'needs doc string' return np.inner(H, np.inner(G, H))
[docs]def calc_rDsqSS(H, A, vec): 'needs doc string' rdsq = calc_rDsq(H[:3] + (H[3] * vec).T, A) return rdsq
[docs]def calc_rDsqZ(H, A, Z, tth, lam): 'needs doc string' rdsq = calc_rDsq(H, A) + Z * sind(tth) * 2.0 * rpd / lam**2 return rdsq
[docs]def calc_rDsqZSS(H, A, vec, Z, tth, lam): 'needs doc string' rdsq = calc_rDsq(H[:3] + (H[3][:, np.newaxis] * vec).T, A) + Z * sind(tth) * 2.0 * rpd / lam**2 return rdsq
[docs]def calc_rDsqT(H, A, Z, tof, difC): 'needs doc string' rdsq = calc_rDsq(H, A) + Z / difC return rdsq
[docs]def calc_rDsqTSS(H, A, vec, Z, tof, difC): 'needs doc string' rdsq = calc_rDsq(H[:3] + (H[3][:, np.newaxis] * vec).T, A) + Z / difC return rdsq
[docs]def PlaneIntercepts(Amat, H, phase, stack): ''' find unit cell intercepts for a stack of hkl planes ''' Steps = range(-1, 2, 2) if stack: Steps = range(-10, 10, 1) Stack = [] Ux = np.array([[0, 0], [1, 0], [1, 1], [0, 1]]) for step in Steps: HX = [] for i in [0, 1, 2]: if H[i]: h, k, l = [(i + 1) % 3, (i + 2) % 3, (i + 3) % 3] for j in [0, 1, 2, 3]: hx = [0, 0, 0] intcpt = ((phase) / 360. + step - H[h] * Ux[j, 0] - H[k] * Ux[j, 1]) / H[l] if 0. <= intcpt <= 1.: hx[h] = Ux[j, 0] hx[k] = Ux[j, 1] hx[l] = intcpt HX.append(hx) if len(HX) > 2: HX = np.array(HX) DX = np.inner(HX - HX[0], Amat) D = np.sqrt(np.sum(DX**2, axis=1)) Dsort = np.argsort(D) HX = HX[Dsort] DX = DX[Dsort] D = D[Dsort] DX[1:, :] = DX[1:, :] / D[1:, nxs] A = 2. * np.ones(HX.shape[0]) A[1:] = [np.dot(DX[1], dx) for dx in DX[1:]] HX = HX[np.argsort(A)] Stack.append(HX) return Stack
[docs]def MaxIndex(dmin, A): 'needs doc string' Hmax = [0, 0, 0] try: cell = A2cell(A) except: cell = [1., 1., 1., 90., 90., 90.] for i in range(3): Hmax[i] = int(round(cell[i] / dmin)) return Hmax
[docs]def transposeHKLF(transMat, Super, refList): ''' Apply transformation matrix to hkl(m) param: transmat: 3x3 or 4x4 array param: Super: 0 or 1 for extra index param: refList list of h,k,l,.... return: newRefs transformed list of h',k',l',,, return: badRefs list of noninteger h',k',l'... ''' newRefs = np.copy(refList) badRefs = [] for H in newRefs: newH = np.inner(transMat, H[:3 + Super]) H[:3 + Super] = np.rint(newH) if not np.allclose(newH, H[:3 + Super], atol=0.01): badRefs.append(newH) return newRefs, badRefs
[docs]def sortHKLd(HKLd, ifreverse, ifdup, ifSS=False): '''sort reflection list on d-spacing; can sort in either order :param HKLd: a list of [h,k,l,d,...]; :param ifreverse: True for largest d first :param ifdup: True if duplicate d-spacings allowed :return: sorted reflection list ''' T = [] N = 3 if ifSS: N = 4 for i, H in enumerate(HKLd): if ifdup: T.append((H[N], i)) else: T.append(H[N]) D = dict(zip(T, HKLd)) T.sort() if ifreverse: T.reverse() X = [] okey = '' for key in T: if key != okey: X.append(D[key]) #remove duplicate d-spacings okey = key return X
[docs]def SwapIndx(Axis, H): 'needs doc string' if Axis in [1, -1]: return H elif Axis in [2, -3]: return [H[1], H[2], H[0]] else: return [H[2], H[0], H[1]]
[docs]def Rh2Hx(Rh): 'needs doc string' Hx = [0, 0, 0] Hx[0] = Rh[0] - Rh[1] Hx[1] = Rh[1] - Rh[2] Hx[2] = np.sum(Rh) return Hx
[docs]def Hx2Rh(Hx): 'needs doc string' Rh = [0, 0, 0] itk = -Hx[0] + Hx[1] + Hx[2] if itk % 3 != 0: return 0 #error - not rhombohedral reflection else: Rh[1] = itk // 3 Rh[0] = Rh[1] + Hx[0] Rh[2] = Rh[1] - Hx[1] if Rh[0] < 0: for i in range(3): Rh[i] = -Rh[i] return Rh
[docs]def CentCheck(Cent, H): 'needs doc string' h, k, l = H if Cent == 'A' and (k + l) % 2: return False elif Cent == 'B' and (h + l) % 2: return False elif Cent == 'C' and (h + k) % 2: return False elif Cent == 'I' and (h + k + l) % 2: return False elif Cent == 'F' and ((h + k) % 2 or (h + l) % 2 or (k + l) % 2): return False elif Cent == 'R' and (-h + k + l) % 3: return False else: return True
[docs]def GetBraviasNum(center, system): """Determine the Bravais lattice number, as used in GenHBravais :param center: one of: 'P', 'C', 'I', 'F', 'R' (see SGLatt from GSASIIspc.SpcGroup) :param system: one of 'cubic', 'hexagonal', 'tetragonal', 'orthorhombic', 'trigonal' (for R) 'monoclinic', 'triclinic' (see SGSys from GSASIIspc.SpcGroup) :return: a number between 0 and 13 or throws a ValueError exception if the combination of center, system is not found (i.e. non-standard) """ if center.upper() == 'F' and system.lower() == 'cubic': return 0 elif center.upper() == 'I' and system.lower() == 'cubic': return 1 elif center.upper() == 'P' and system.lower() == 'cubic': return 2 elif center.upper() == 'R' and system.lower() == 'trigonal': return 3 elif center.upper() == 'P' and system.lower() == 'hexagonal': return 4 elif center.upper() == 'I' and system.lower() == 'tetragonal': return 5 elif center.upper() == 'P' and system.lower() == 'tetragonal': return 6 elif center.upper() == 'F' and system.lower() == 'orthorhombic': return 7 elif center.upper() == 'I' and system.lower() == 'orthorhombic': return 8 elif center.upper() == 'A' and system.lower() == 'orthorhombic': return 9 elif center.upper() == 'B' and system.lower() == 'orthorhombic': return 10 elif center.upper() == 'C' and system.lower() == 'orthorhombic': return 11 elif center.upper() == 'P' and system.lower() == 'orthorhombic': return 12 elif center.upper() == 'C' and system.lower() == 'monoclinic': return 13 elif center.upper() == 'P' and system.lower() == 'monoclinic': return 14 elif center.upper() == 'P' and system.lower() == 'triclinic': return 15 raise ValueError('non-standard Bravais lattice center=%s, cell=%s' % (center, system))
[docs]def GenHBravais(dmin, Bravais, A): """Generate the positionally unique powder diffraction reflections :param dmin: minimum d-spacing in A :param Bravais: lattice type (see GetBraviasNum). Bravais is one of: * 0 F cubic * 1 I cubic * 2 P cubic * 3 R hexagonal (trigonal not rhombohedral) * 4 P hexagonal * 5 I tetragonal * 6 P tetragonal * 7 F orthorhombic * 8 I orthorhombic * 9 A orthorhombic * 10 B orthorhombic * 11 C orthorhombic * 12 P orthorhombic * 13 I monoclinic * 14 C monoclinic * 15 P monoclinic * 16 P triclinic :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] :return: HKL unique d list of [h,k,l,d,-1] sorted with largest d first """ if Bravais in [ 9, ]: Cent = 'A' elif Bravais in [ 10, ]: Cent = 'B' elif Bravais in [11, 14]: Cent = 'C' elif Bravais in [1, 5, 8, 13]: Cent = 'I' elif Bravais in [0, 7]: Cent = 'F' elif Bravais in [3]: Cent = 'R' else: Cent = 'P' Hmax = MaxIndex(dmin, A) dminsq = 1. / (dmin**2) HKL = [] if Bravais == 16: #triclinic for l in range(-Hmax[2], Hmax[2] + 1): for k in range(-Hmax[1], Hmax[1] + 1): hmin = 0 if (k < 0): hmin = 1 if (k == 0 and l < 0): hmin = 1 for h in range(hmin, Hmax[0] + 1): H = [h, k, l] rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq), -1]) elif Bravais in [13, 14, 15]: #monoclinic - b unique Hmax = SwapIndx(2, Hmax) for h in range(Hmax[0] + 1): for k in range(-Hmax[1], Hmax[1] + 1): lmin = 0 if k < 0: lmin = 1 for l in range(lmin, Hmax[2] + 1): [h, k, l] = SwapIndx(-2, [h, k, l]) H = [] if CentCheck(Cent, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq), -1]) [h, k, l] = SwapIndx(2, [h, k, l]) elif Bravais in [7, 8, 9, 10, 11, 12]: #orthorhombic for h in range(Hmax[0] + 1): for k in range(Hmax[1] + 1): for l in range(Hmax[2] + 1): H = [] if CentCheck(Cent, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq), -1]) elif Bravais in [5, 6]: #tetragonal for l in range(Hmax[2] + 1): for k in range(Hmax[1] + 1): for h in range(k, Hmax[0] + 1): H = [] if CentCheck(Cent, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq), -1]) elif Bravais in [3, 4]: lmin = 0 if Bravais == 3: lmin = -Hmax[2] #hexagonal/trigonal for l in range(lmin, Hmax[2] + 1): for k in range(Hmax[1] + 1): hmin = k if l < 0: hmin += 1 for h in range(hmin, Hmax[0] + 1): H = [] if CentCheck(Cent, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq), -1]) else: #cubic for l in range(Hmax[2] + 1): for k in range(l, Hmax[1] + 1): for h in range(k, Hmax[0] + 1): H = [] if CentCheck(Cent, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq), -1]) return sortHKLd(HKL, True, False)
[docs]def getHKLmax(dmin, SGData, A): 'finds maximum allowed hkl for given A within dmin' SGLaue = SGData['SGLaue'] if SGLaue in ['3R', '3mR']: #Rhombohedral axes Hmax = [0, 0, 0] cell = A2cell(A) aHx = cell[0] * math.sqrt(2.0 * (1.0 - cosd(cell[3]))) cHx = cell[0] * math.sqrt(3.0 * (1.0 + 2.0 * cosd(cell[3]))) Hmax[0] = Hmax[1] = int(round(aHx / dmin)) Hmax[2] = int(round(cHx / dmin)) #print Hmax,aHx,cHx else: # all others Hmax = MaxIndex(dmin, A) return Hmax
[docs]def GenHLaue(dmin, SGData, A): """Generate the crystallographically unique powder diffraction reflections for a lattice and Bravais type :param dmin: minimum d-spacing :param SGData: space group dictionary with at least * 'SGLaue': Laue group symbol: one of '-1','2/m','mmm','4/m','6/m','4/mmm','6/mmm', '3m1', '31m', '3', '3R', '3mR', 'm3', 'm3m' * 'SGLatt': lattice centering: one of 'P','A','B','C','I','F' * 'SGUniq': code for unique monoclinic axis one of 'a','b','c' (only if 'SGLaue' is '2/m') otherwise an empty string :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] :return: HKL = list of [h,k,l,d] sorted with largest d first and is unique part of reciprocal space ignoring anomalous dispersion """ import math SGLaue = SGData['SGLaue'] SGLatt = SGData['SGLatt'] SGUniq = SGData['SGUniq'] #finds maximum allowed hkl for given A within dmin Hmax = getHKLmax(dmin, SGData, A) dminsq = 1. / (dmin**2) HKL = [] if SGLaue == '-1': #triclinic for l in range(-Hmax[2], Hmax[2] + 1): for k in range(-Hmax[1], Hmax[1] + 1): hmin = 0 if (k < 0) or (k == 0 and l < 0): hmin = 1 for h in range(hmin, Hmax[0] + 1): H = [] if CentCheck(SGLatt, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq)]) elif SGLaue == '2/m': #monoclinic axisnum = 1 + ['a', 'b', 'c'].index(SGUniq) Hmax = SwapIndx(axisnum, Hmax) for h in range(Hmax[0] + 1): for k in range(-Hmax[1], Hmax[1] + 1): lmin = 0 if k < 0: lmin = 1 for l in range(lmin, Hmax[2] + 1): [h, k, l] = SwapIndx(-axisnum, [h, k, l]) H = [] if CentCheck(SGLatt, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq)]) [h, k, l] = SwapIndx(axisnum, [h, k, l]) elif SGLaue in ['mmm', '4/m', '6/m']: #orthorhombic for l in range(Hmax[2] + 1): for h in range(Hmax[0] + 1): kmin = 1 if SGLaue == 'mmm' or h == 0: kmin = 0 for k in range(kmin, Hmax[1] + 1): H = [] if CentCheck(SGLatt, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq)]) elif SGLaue in ['4/mmm', '6/mmm']: #tetragonal & hexagonal for l in range(Hmax[2] + 1): for h in range(Hmax[0] + 1): for k in range(h + 1): H = [] if CentCheck(SGLatt, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq)]) elif SGLaue in ['3m1', '31m', '3', '3R', '3mR']: #trigonals for l in range(-Hmax[2], Hmax[2] + 1): hmin = 0 if l < 0: hmin = 1 for h in range(hmin, Hmax[0] + 1): if SGLaue in ['3R', '3']: kmax = h kmin = -int((h - 1.) / 2.) else: kmin = 0 kmax = h if SGLaue in ['3m1', '3mR'] and l < 0: kmax = h - 1 if SGLaue == '31m' and l < 0: kmin = 1 for k in range(kmin, kmax + 1): H = [] if CentCheck(SGLatt, [h, k, l]): H = [h, k, l] if SGLaue in ['3R', '3mR']: H = Hx2Rh(H) if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([H[0], H[1], H[2], rdsq2d(rdsq)]) else: #cubic for h in range(Hmax[0] + 1): for k in range(h + 1): lmin = 0 lmax = k if SGLaue == 'm3': lmax = h - 1 if h == k: lmax += 1 for l in range(lmin, lmax + 1): H = [] if CentCheck(SGLatt, [h, k, l]): H = [h, k, l] if H: rdsq = calc_rDsq(H, A) if 0 < rdsq <= dminsq: HKL.append([h, k, l, rdsq2d(rdsq)]) return sortHKLd(HKL, True, True)
[docs]def GenPfHKLs(nMax, SGData, A): """Generate the unique pole figure reflections for a lattice and Bravais type. Min d-spacing=1.0A & no more than nMax returned :param nMax: maximum number of hkls returned :param SGData: space group dictionary with at least * 'SGLaue': Laue group symbol: one of '-1','2/m','mmm','4/m','6/m','4/mmm','6/mmm', '3m1', '31m', '3', '3R', '3mR', 'm3', 'm3m' * 'SGLatt': lattice centering: one of 'P','A','B','C','I','F' * 'SGUniq': code for unique monoclinic axis one of 'a','b','c' (only if 'SGLaue' is '2/m') otherwise an empty string :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] :return: HKL = list of 'h k l' strings sorted with largest d first; no duplicate zones """ HKL = np.array(GenHLaue(1.0, SGData, A)).T[:3].T #strip d-spacings N = min(nMax, len(HKL)) return ['%d %d %d' % (h[0], h[1], h[2]) for h in HKL[:N]]
[docs]def GenSSHLaue(dmin, SGData, SSGData, Vec, maxH, A): 'needs a doc string' ifMag = False if 'MagSpGrp' in SGData: ifMag = True HKLs = [] vec = np.array(Vec) vstar = np.sqrt(calc_rDsq(vec, A)) #find extra needed for -n SS reflections dvec = 1. / (maxH * vstar + 1. / dmin) HKL = GenHLaue(dvec, SGData, A) SSdH = [vec * h for h in range(-maxH, maxH + 1)] SSdH = dict(zip(range(-maxH, maxH + 1), SSdH)) for h, k, l, d in HKL: ext = G2spc.GenHKLf([h, k, l], SGData)[0] #h,k,l must be integral values here if not ext and d >= dmin: HKLs.append([h, k, l, 0, d]) for dH in SSdH: if dH: DH = SSdH[dH] H = [h + DH[0], k + DH[1], l + DH[2]] d = 1. / np.sqrt(calc_rDsq(H, A)) if d >= dmin: HKLM = np.array([h, k, l, dH]) if (G2spc.checkSSLaue([h, k, l, dH], SGData, SSGData) and G2spc.checkSSextc(HKLM, SSGData)) or ifMag: HKLs.append([h, k, l, dH, d]) return HKLs
[docs]def LaueUnique2(SGData, refList): ''' Impose Laue symmetry on hkl :param SGData: space group data from 'P '+Laue :param HKLF: np.array([[h,k,l,...]]) reflection set to be converted :return: HKLF new reflection array with imposed Laue symmetry ''' for ref in refList: H = ref[:3] Uniq = G2spc.GenHKLf(H, SGData)[2] Uniq = G2mth.sortArray(G2mth.sortArray(G2mth.sortArray(Uniq, 2), 1), 0) ref[:3] = Uniq[-1] return refList
[docs]def LaueUnique(Laue, HKLF): ''' Impose Laue symmetry on hkl :param str Laue: Laue symbol, as below centrosymmetric Laue groups:: ['-1','2/m','112/m','2/m11','mmm','-42m','-4m2','4/mmm','-3', '-31m','-3m1','6/m','6/mmm','m3','m3m'] noncentrosymmetric Laue groups:: ['1','2','211','112','m','m11','11m','222','mm2','m2m','2mm', '4','-4','422','4mm','3','312','321','31m','3m1','6','-6', '622','6mm','-62m','-6m2','23','432','-43m'] :param HKLF: np.array([[h,k,l,...]]) reflection set to be converted :returns: HKLF new reflection array with imposed Laue symmetry ''' HKLFT = HKLF.T mat41 = np.array([[0, 1, 0], [-1, 0, 0], [0, 0, 1]]) #hkl -> k,-h,l mat43 = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) #hkl -> -k,h,l mat4bar = np.array([[0, -1, 0], [1, 0, 0], [0, 0, -1]]) #hkl -> k,-h,-l mat31 = np.array([[-1, -1, 0], [1, 0, 0], [0, 0, 1]]) #hkl -> ihl = -h-k,h,l mat32 = np.array([[0, 1, 0], [-1, -1, 0], [0, 0, 1]]) #hkl -> kil = k,-h-k,l matd3 = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]) #hkl -> k,l,h matd3q = np.array([[0, 0, -1], [-1, 0, 0], [0, 1, 0]]) #hkl -> -l,-h,k matd3t = np.array([[0, 0, -1], [1, 0, 0], [0, -1, 0]]) #hkl -> -l,h,-k mat6 = np.array([[1, 1, 0], [-1, 0, 0], [0, 0, 1]]) #hkl -> h+k,-h,l really 65 matdm = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) #hkl -> k,h,l matdmp = np.array([[-1, -1, 0], [0, 1, 0], [0, 0, 1]]) #hkl -> -h-k,k,l matkm = np.array([[-1, 0, 0], [1, 1, 0], [0, 0, 1]]) #hkl -> -h,h+k,l matd2 = np.array([[0, 1, 0], [1, 0, 0], [0, 0, -1]]) #hkl -> k,h,-l matdm3 = np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0]]) #hkl -> h,l,k mat2d43 = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) #hkl -> k,-h,l matk2 = np.array([[-1, 0, 0], [1, 1, 0], [0, 0, -1]]) #hkl -> -h,-i,-l #triclinic if Laue == '1': #ok pass elif Laue == '-1': #ok HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] < 0), HKLFT[:3] * np.array([-1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([-1, -1, -1])[:, nxs], HKLFT[:3]) #monoclinic #noncentrosymmetric - all ok elif Laue == '2': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([-1, 1, -1])[:, nxs], HKLFT[:3]) elif Laue == '1 1 2': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] < 0), HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) elif Laue == '2 1 1': HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[1] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, -1, -1])[:, nxs], HKLFT[:3]) elif Laue == 'm': HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) elif Laue == 'm 1 1': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, 1, 1])[:, nxs], HKLFT[:3]) elif Laue == '1 1 m': HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) #centrosymmetric - all ok elif Laue == '2/m 1 1': HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, 1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[2] * HKLFT[0] == 0) & (HKLFT[1] < 0), HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) elif Laue == '2/m': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] * HKLFT[1] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) elif Laue == '1 1 2/m': HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[1] * HKLFT[2] == 0) & (HKLFT[0] < 0), HKLFT[:3] * np.array([-1, 1, 1])[:, nxs], HKLFT[:3]) #orthorhombic #noncentrosymmetric - all OK elif Laue == '2 2 2': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[1] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) elif Laue == 'm m 2': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, 1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) elif Laue == '2 m m': HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) elif Laue == 'm 2 m': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, 1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) #centrosymmetric - all ok elif Laue == 'm m m': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, 1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) #tetragonal #noncentrosymmetric - all ok elif Laue == '4': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] == 0) & (HKLFT[1] > 0), np.squeeze(np.inner(HKLF[:, :3], mat41[nxs, :, :])).T, HKLFT[:3]) elif Laue == '-4': HKLFT[:3] = np.where(HKLFT[0] <= 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] <= 0, np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] <= 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] <= 0, np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) elif Laue == '4 2 2': HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] == 0) & (HKLFT[1] < HKLFT[0]), np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] == 0, np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) #in lieu od 2-fold elif Laue == '4 m m': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < HKLFT[1], np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) elif Laue == '-4 2 m': HKLFT[:3] = np.where(HKLFT[0] <= 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] <= 0, np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] <= 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] <= 0, np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) elif Laue == '-4 m 2': HKLFT[:3] = np.where( HKLFT[2] < 0, np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] <= 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] == 0) & (HKLFT[1] <= 0), np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] < 0), HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] == 0) & (HKLFT[1] == 0), np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] == 0) & (HKLFT[0] > HKLFT[1]), np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) #centrosymmetric - all ok elif Laue == '4/m': HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] == 0) & (HKLFT[1] > 0), np.squeeze(np.inner(HKLF[:, :3], mat41[nxs, :, :])).T, HKLFT[:3]) elif Laue == '4/m m m': HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], mat41[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) #trigonal - all hex cell #noncentrosymmetric - all ok elif Laue == '3': HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] == 0, np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3]) elif Laue == '3 1 2': HKLFT[:3] = np.where( HKLFT[2] < 0, np.squeeze(np.inner(HKLF[:, :3], matk2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] == 0, np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], matk2[nxs, :, :])).T, HKLFT[:3]) elif Laue == '3 2 1': HKLFT[:3] = np.where( HKLFT[0] <= -2 * HKLFT[1], np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < -2 * HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] > 0) & (HKLFT[1] == HKLFT[0]), np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T HKLFT[:3] = np.where( (HKLFT[0] != 0) & (HKLFT[2] > 0) & (HKLFT[0] == -2 * HKLFT[1]), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) elif Laue == '3 1 m': HKLFT[:3] = np.where( HKLFT[0] >= HKLFT[1], np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( 2 * HKLFT[1] < -HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] > -2 * HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], matdmp[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T elif Laue == '3 m 1': HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[1] + HKLFT[0]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], matkm[nxs, :, :])).T, HKLFT[:3]) #centrosymmetric elif Laue == '-3': #ok HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([-1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] == 0, np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] == 0) & (HKLFT[0] < 0), -np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], -mat31[nxs, :, :])).T, HKLFT[:3]) elif Laue == '-3 m 1': #ok HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[1] + HKLFT[0]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], matkm[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[2] < 0, np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] == 0) & (HKLFT[1] < HKLFT[0]), np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) elif Laue == '-3 1 m': #ok HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([-1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] == 0, np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] <= 0, np.squeeze(np.inner(HKLF[:, :3], -mat31[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) #hexagonal #noncentrosymmetric elif Laue == '6': #ok HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] == 0, np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3]) elif Laue == '-6': #ok HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] == 0, np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3]) elif Laue == '6 2 2': #ok HKLFT[:3] = np.where( HKLFT[2] < 0, np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] == 0, np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] == 0) & (HKLFT[0] > HKLFT[1]), np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) elif Laue == '6 m m': #ok HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] == 0, np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] > HKLFT[1], np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) elif Laue == '-6 m 2': #ok HKLFT[:3] = np.where( HKLFT[2] < 0, np.squeeze(np.inner(HKLF[:, :3], matk2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] == 0, np.squeeze(np.inner(HKLF[:, :3], mat31[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], matk2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) elif Laue == '-6 2 m': #ok HKLFT[:3] = np.where( HKLFT[2] < 0, np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] <= -2 * HKLFT[1], np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < -2 * HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] > 0) & (HKLFT[1] == HKLFT[0]), np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T HKLFT[:3] = np.where( HKLFT[2] < 0, np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] > HKLFT[1], np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) #centrosymmetric elif Laue == '6/m': #ok HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] == 0, np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3]) elif Laue == '6/m m m': #ok HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] + HKLFT[1]) < 0, np.squeeze(np.inner(HKLF[:, :3], mat32[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] < 0, np.squeeze(np.inner(HKLF[:, :3], mat6[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] > HKLFT[1], np.squeeze(np.inner(HKLF[:, :3], matdm.T[nxs, :, :])).T, HKLFT[:3]) #cubic - all ok #noncentrosymmetric - elif Laue == '2 3': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[1] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] < 0) & ((HKLFT[0] > -HKLFT[2]) | (HKLFT[1] > -HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3t[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] < 0) & ((HKLFT[0] > -HKLFT[2]) | (HKLFT[1] >= -HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3t[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([-1, 1, -1])[:, nxs], HKLFT[:3]) elif Laue == '4 3 2': HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, -1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < 0, np.squeeze(np.inner(HKLF[:, :3], mat43[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] == 0) & (HKLFT[1] < HKLFT[0]), np.squeeze(np.inner(HKLF[:, :3], matd2[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] == 0, np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) #in lieu od 2-fold HKLFT[:3] = np.where( (HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2]), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2]), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] == 0, np.squeeze(np.inner(HKLF[:, :3], mat2d43[nxs, :, :])).T, HKLFT[:3]) elif Laue == '-4 3 m': HKLFT[:3] = np.where(HKLFT[0] <= 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] <= 0, np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[0] <= 0, HKLFT[:3] * np.array([-1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] <= 0, np.squeeze(np.inner(HKLF[:, :3], mat4bar[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[1] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[1] < HKLFT[0], np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where((HKLFT[0] == 0) & (HKLFT[2] < 0), HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] >= 0) & (HKLFT[1] < HKLFT[0]), np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([-1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] < 0) & (HKLFT[2] < -HKLFT[0]) & (HKLFT[1] > HKLFT[2]), np.squeeze(np.inner(HKLF[:, :3], matd3q[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[0] < 0) & (HKLFT[2] >= -HKLFT[0]) & (HKLFT[1] > HKLFT[2]), np.squeeze(np.inner(HKLF[:, :3], matdm3[nxs, :, :])).T, HKLFT[:3]) #centrosymmetric elif Laue == 'm 3': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, 1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) elif Laue == 'm 3 m': HKLFT[:3] = np.where(HKLFT[0] < 0, HKLFT[:3] * np.array([-1, 1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[1] < 0, HKLFT[:3] * np.array([1, -1, 1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where(HKLFT[2] < 0, HKLFT[:3] * np.array([1, 1, -1])[:, nxs], HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( (HKLFT[2] >= 0) & ((HKLFT[0] >= HKLFT[2]) | (HKLFT[1] > HKLFT[2])), np.squeeze(np.inner(HKLF[:, :3], matd3[nxs, :, :])).T, HKLFT[:3]) HKLFT[:3] = np.where( HKLFT[0] > HKLFT[1], np.squeeze(np.inner(HKLF[:, :3], matdm[nxs, :, :])).T, HKLFT[:3]) return HKLFT.T
#Spherical harmonics routines
[docs]def OdfChk(SGLaue, L, M): 'needs doc string' if not L % 2 and abs(M) <= L: if SGLaue == '0': #cylindrical symmetry if M == 0: return True elif SGLaue == '-1': return True elif SGLaue == '2/m': if not abs(M) % 2: return True elif SGLaue == 'mmm': if not abs(M) % 2 and M >= 0: return True elif SGLaue == '4/m': if not abs(M) % 4: return True elif SGLaue == '4/mmm': if not abs(M) % 4 and M >= 0: return True elif SGLaue in ['3R', '3']: if not abs(M) % 3: return True elif SGLaue in ['3mR', '3m1', '31m']: if not abs(M) % 3 and M >= 0: return True elif SGLaue == '6/m': if not abs(M) % 6: return True elif SGLaue == '6/mmm': if not abs(M) % 6 and M >= 0: return True elif SGLaue == 'm3': if M > 0: if L % 12 == 2: if M <= L // 12: return True else: if M <= L // 12 + 1: return True elif SGLaue == 'm3m': if M > 0: if L % 12 == 2: if M <= L // 12: return True else: if M <= L // 12 + 1: return True return False
[docs]def GenSHCoeff(SGLaue, SamSym, L, IfLMN=True): 'needs doc string' coeffNames = [] for iord in [2 * i + 2 for i in range(L // 2)]: for m in [i - iord for i in range(2 * iord + 1)]: if OdfChk(SamSym, iord, m): for n in [i - iord for i in range(2 * iord + 1)]: if OdfChk(SGLaue, iord, n): if IfLMN: coeffNames.append('C(%d,%d,%d)' % (iord, m, n)) else: coeffNames.append('C(%d,%d)' % (iord, n)) return coeffNames
[docs]def CrsAng(H, cell, SGData): 'needs doc string' a, b, c, al, be, ga = cell SQ3 = 1.732050807569 H1 = np.array([1, 0, 0]) H2 = np.array([0, 1, 0]) H3 = np.array([0, 0, 1]) H4 = np.array([1, 1, 1]) G, g = cell2Gmat(cell) Laue = SGData['SGLaue'] Naxis = SGData['SGUniq'] if len(H.shape) == 1: DH = np.inner(H, np.inner(G, H)) else: DH = np.array([np.inner(h, np.inner(G, h)) for h in H]) if Laue == '2/m': if Naxis == 'a': DR = np.inner(H1, np.inner(G, H1)) DHR = np.inner(H, np.inner(G, H1)) elif Naxis == 'b': DR = np.inner(H2, np.inner(G, H2)) DHR = np.inner(H, np.inner(G, H2)) else: DR = np.inner(H3, np.inner(G, H3)) DHR = np.inner(H, np.inner(G, H3)) elif Laue in ['R3', 'R3m']: DR = np.inner(H4, np.inner(G, H4)) DHR = np.inner(H, np.inner(G, H4)) else: DR = np.inner(H3, np.inner(G, H3)) DHR = np.inner(H, np.inner(G, H3)) DHR /= np.sqrt(DR * DH) phi = np.where(DHR <= 1.0, acosd(DHR), 0.0) if Laue == '-1': BA = H.T[1] * a / (b - H.T[0] * cosd(ga)) BB = H.T[0] * sind(ga)**2 elif Laue == '2/m': if Naxis == 'a': BA = H.T[2] * b / (c - H.T[1] * cosd(al)) BB = H.T[1] * sind(al)**2 elif Naxis == 'b': BA = H.T[0] * c / (a - H.T[2] * cosd(be)) BB = H.T[2] * sind(be)**2 else: BA = H.T[1] * a / (b - H.T[0] * cosd(ga)) BB = H.T[0] * sind(ga)**2 elif Laue in ['mmm', '4/m', '4/mmm']: BA = H.T[1] * a BB = H.T[0] * b elif Laue in ['3R', '3mR']: BA = H.T[0] + H.T[1] - 2.0 * H.T[2] BB = SQ3 * (H.T[0] - H.T[1]) elif Laue in ['m3', 'm3m']: BA = H.T[1] BB = H.T[0] else: BA = H.T[0] + 2.0 * H.T[1] BB = SQ3 * H.T[0] beta = atan2d(BA, BB) return phi, beta
[docs]def SamAng(Tth, Gangls, Sangl, IFCoup): """Compute sample orientation angles vs laboratory coord. system :param Tth: Signed theta :param Gangls: Sample goniometer angles phi,chi,omega,azmuth :param Sangl: Sample angle zeros om-0, chi-0, phi-0 :param IFCoup: True if omega & 2-theta coupled in CW scan :returns: psi,gam: Sample odf angles dPSdA,dGMdA: Angle zero derivatives """ if IFCoup: GSomeg = sind(Gangls[2] + Tth) GComeg = cosd(Gangls[2] + Tth) else: GSomeg = sind(Gangls[2]) GComeg = cosd(Gangls[2]) GSTth = sind(Tth) GCTth = cosd(Tth) GSazm = sind(Gangls[3]) GCazm = cosd(Gangls[3]) GSchi = sind(Gangls[1]) GCchi = cosd(Gangls[1]) GSphi = sind(Gangls[0] + Sangl[2]) GCphi = cosd(Gangls[0] + Sangl[2]) SSomeg = sind(Sangl[0]) SComeg = cosd(Sangl[0]) SSchi = sind(Sangl[1]) SCchi = cosd(Sangl[1]) AT = -GSTth * GComeg + GCTth * GCazm * GSomeg BT = GSTth * GSomeg + GCTth * GCazm * GComeg CT = -GCTth * GSazm * GSchi DT = -GCTth * GSazm * GCchi BC1 = -AT * GSphi + (CT + BT * GCchi) * GCphi BC2 = DT - BT * GSchi BC3 = AT * GCphi + (CT + BT * GCchi) * GSphi BC = BC1 * SComeg * SCchi + BC2 * SComeg * SSchi - BC3 * SSomeg psi = acosd(BC) BD = 1.0 - BC**2 C = np.where(BD > 1.e-6, rpd / np.sqrt(BD), 0.) dPSdA = [ -C * (-BC1 * SSomeg * SCchi - BC2 * SSomeg * SSchi - BC3 * SComeg), -C * (-BC1 * SComeg * SSchi + BC2 * SComeg * SCchi), -C * (-BC1 * SSomeg - BC3 * SComeg * SCchi) ] BA = -BC1 * SSchi + BC2 * SCchi BB = BC1 * SSomeg * SCchi + BC2 * SSomeg * SSchi + BC3 * SComeg gam = atan2d(BB, BA) BD = (BA**2 + BB**2) / rpd dBAdO = 0 dBAdC = -BC1 * SCchi - BC2 * SSchi dBAdF = BC3 * SSchi dBBdO = BC1 * SComeg * SCchi + BC2 * SComeg * SSchi - BC3 * SSomeg dBBdC = -BC1 * SSomeg * SSchi + BC2 * SSomeg * SCchi dBBdF = BC1 * SComeg - BC3 * SSomeg * SCchi dGMdA = np.where(BD > 1.e-6,[(BA*dBBdO-BB*dBAdO)/BD,(BA*dBBdC-BB*dBAdC)/BD, \ (BA*dBBdF-BB*dBAdF)/BD],[np.zeros_like(BD),np.zeros_like(BD),np.zeros_like(BD)]) return psi, gam, dPSdA, dGMdA
BOH = { 'L=2': [[], [], []], 'L=4': [[0.30469720, 0.36418281], [], []], 'L=6': [[-0.14104740, 0.52775103], [], []], 'L=8': [[0.28646862, 0.21545346, 0.32826995], [], []], 'L=10': [[-0.16413497, 0.33078546, 0.39371345], [], []], 'L=12': [[0.26141975, 0.27266871, 0.03277460, 0.32589402], [0.09298802, -0.23773812, 0.49446631, 0.0], []], 'L=14': [[-0.17557309, 0.25821932, 0.27709173, 0.33645360], [], []], 'L=16': [[0.24370673, 0.29873515, 0.06447688, 0.00377, 0.32574495], [0.12039646, -0.25330128, 0.23950998, 0.40962508, 0.0], []], 'L=18': [[-0.16914245, 0.17017340, 0.34598142, 0.07433932, 0.32696037], [-0.06901768, 0.16006562, -0.24743528, 0.47110273, 0.0], []], 'L=20': [[ 0.23067026, 0.31151832, 0.09287682, 0.01089683, 0.00037564, 0.32573563 ], [0.13615420, -0.25048007, 0.12882081, 0.28642879, 0.34620433, 0.0], []], 'L=22': [[ -0.16109560, 0.10244188, 0.36285175, 0.13377513, 0.01314399, 0.32585583 ], [-0.09620055, 0.20244115, -0.22389483, 0.17928946, 0.42017231, 0.0], []], 'L=24': [[ 0.22050742, 0.31770654, 0.11661736, 0.02049853, 0.00150861, 0.00003426, 0.32573505 ], [ 0.13651722, -0.21386648, 0.00522051, 0.33939435, 0.10837396, 0.32914497, 0.0 ], [ 0.05378596, -0.11945819, 0.16272298, -0.26449730, 0.44923956, 0.0, 0.0 ]], 'L=26': [[ -0.15435003, 0.05261630, 0.35524646, 0.18578869, 0.03259103, 0.00186197, 0.32574594 ], [ -0.11306511, 0.22072681, -0.18706142, 0.05439948, 0.28122966, 0.35634355, 0.0 ], []], 'L=28': [[ 0.21225019, 0.32031716, 0.13604702, 0.03132468, 0.00362703, 0.00018294, 0.00000294, 0.32573501 ], [ 0.13219496, -0.17206256, -0.08742608, 0.32671661, 0.17973107, 0.02567515, 0.32619598, 0.0 ], [ 0.07989184, -0.16735346, 0.18839770, -0.20705337, 0.12926808, 0.42715602, 0.0, 0.0 ]], 'L=30': [[ -0.14878368, 0.01524973, 0.33628434, 0.22632587, 0.05790047, 0.00609812, 0.00022898, 0.32573594 ], [ -0.11721726, 0.20915005, -0.11723436, -0.07815329, 0.31318947, 0.13655742, 0.33241385, 0.0 ], [ -0.04297703, 0.09317876, -0.11831248, 0.17355132, -0.28164031, 0.42719361, 0.0, 0.0 ]], 'L=32': [[ 0.20533892, 0.32087437, 0.15187897, 0.04249238, 0.00670516, 0.00054977, 0.00002018, 0.00000024, 0.32573501 ], [ 0.12775091, -0.13523423, -0.14935701, 0.28227378, 0.23670434, 0.05661270, 0.00469819, 0.32578978, 0.0 ], [ 0.09703829, -0.19373733, 0.18610682, -0.14407046, 0.00220535, 0.26897090, 0.36633402, 0.0, 0.0 ]], 'L=34': [[ -0.14409234, -0.01343681, 0.31248977, 0.25557722, 0.08571889, 0.01351208, 0.00095792, 0.00002550, 0.32573508 ], [ -0.11527834, 0.18472133, -0.04403280, -0.16908618, 0.27227021, 0.21086614, 0.04041752, 0.32688152, 0.0 ], [ -0.06773139, 0.14120811, -0.15835721, 0.18357456, -0.19364673, 0.08377174, 0.43116318, 0.0, 0.0 ]] } Lnorm = lambda L: 4. * np.pi / (2.0 * L + 1.)
[docs]def GetKcl(L, N, SGLaue, phi, beta): 'needs doc string' import pytexture as ptx if SGLaue in ['m3', 'm3m']: if 'array' in str(type(phi)) and np.any(phi.shape): Kcl = np.zeros_like(phi) else: Kcl = 0. for j in range(0, L + 1, 4): im = j // 4 if 'array' in str(type(phi)) and np.any(phi.shape): pcrs = ptx.pyplmpsi(L, j, len(phi), phi)[0] else: pcrs = ptx.pyplmpsi(L, j, 1, phi)[0] Kcl += BOH['L=%d' % (L)][N - 1][im] * pcrs * cosd(j * beta) else: if 'array' in str(type(phi)) and np.any(phi.shape): pcrs = ptx.pyplmpsi(L, N, len(phi), phi)[0] else: pcrs = ptx.pyplmpsi(L, N, 1, phi)[0] pcrs *= RSQ2PI if N: pcrs *= SQ2 if SGLaue in ['mmm', '4/mmm', '6/mmm', 'R3mR', '3m1', '31m']: if SGLaue in ['3mR', '3m1', '31m']: if N % 6 == 3: Kcl = pcrs * sind(N * beta) else: Kcl = pcrs * cosd(N * beta) else: Kcl = pcrs * cosd(N * beta) else: Kcl = pcrs * (cosd(N * beta) + sind(N * beta)) return Kcl
[docs]def GetKsl(L, M, SamSym, psi, gam): 'needs doc string' import pytexture as ptx if 'array' in str(type(psi)) and np.any(psi.shape): psrs, dpdps = ptx.pyplmpsi(L, M, len(psi), psi) else: psrs, dpdps = ptx.pyplmpsi(L, M, 1, psi) psrs *= RSQ2PI dpdps *= RSQ2PI if M: psrs *= SQ2 dpdps *= SQ2 if SamSym in [ 'mmm', ]: dum = cosd(M * gam) Ksl = psrs * dum dKsdp = dpdps * dum dKsdg = -psrs * M * sind(M * gam) else: dum = cosd(M * gam) + sind(M * gam) Ksl = psrs * dum dKsdp = dpdps * dum dKsdg = psrs * M * (-sind(M * gam) + cosd(M * gam)) return Ksl, dKsdp, dKsdg
[docs]def GetKclKsl(L, N, SGLaue, psi, phi, beta): """ This is used for spherical harmonics description of preferred orientation; cylindrical symmetry only (M=0) and no sample angle derivatives returned """ import pytexture as ptx Ksl, x = ptx.pyplmpsi(L, 0, 1, psi) Ksl *= RSQ2PI if SGLaue in ['m3', 'm3m']: Kcl = 0.0 for j in range(0, L + 1, 4): im = j // 4 pcrs, dum = ptx.pyplmpsi(L, j, 1, phi) Kcl += BOH['L=%d' % (L)][N - 1][im] * pcrs * cosd(j * beta) else: pcrs, dum = ptx.pyplmpsi(L, N, 1, phi) pcrs *= RSQ2PI if N: pcrs *= SQ2 if SGLaue in ['mmm', '4/mmm', '6/mmm', 'R3mR', '3m1', '31m']: if SGLaue in ['3mR', '3m1', '31m']: if N % 6 == 3: Kcl = pcrs * sind(N * beta) else: Kcl = pcrs * cosd(N * beta) else: Kcl = pcrs * cosd(N * beta) else: Kcl = pcrs * (cosd(N * beta) + sind(N * beta)) return Kcl * Ksl, Lnorm(L)
[docs]def Glnh(Start, SHCoef, psi, gam, SamSym): 'needs doc string' import pytexture as ptx if Start: ptx.pyqlmninit() Start = False Fln = np.zeros(len(SHCoef)) for i, term in enumerate(SHCoef): l, m, n = eval(term.strip('C')) pcrs, dum = ptx.pyplmpsi(l, m, 1, psi) pcrs *= RSQPI if m == 0: pcrs /= SQ2 if SamSym in [ 'mmm', ]: Ksl = pcrs * cosd(m * gam) else: Ksl = pcrs * (cosd(m * gam) + sind(m * gam)) Fln[i] = SHCoef[term] * Ksl * Lnorm(l) ODFln = dict(zip(SHCoef.keys(), list(zip(SHCoef.values(), Fln)))) return ODFln
[docs]def Flnh(Start, SHCoef, phi, beta, SGData): 'needs doc string' import pytexture as ptx if Start: ptx.pyqlmninit() Start = False Fln = np.zeros(len(SHCoef)) for i, term in enumerate(SHCoef): l, m, n = eval(term.strip('C')) if SGData['SGLaue'] in ['m3', 'm3m']: Kcl = 0.0 for j in range(0, l + 1, 4): im = j // 4 pcrs, dum = ptx.pyplmpsi(l, j, 1, phi) Kcl += BOH['L=' + str(l)][n - 1][im] * pcrs * cosd(j * beta) else: #all but cubic pcrs, dum = ptx.pyplmpsi(l, n, 1, phi) pcrs *= RSQPI if n == 0: pcrs /= SQ2 if SGData['SGLaue'] in [ 'mmm', '4/mmm', '6/mmm', 'R3mR', '3m1', '31m' ]: if SGData['SGLaue'] in ['3mR', '3m1', '31m']: if n % 6 == 3: Kcl = pcrs * sind(n * beta) else: Kcl = pcrs * cosd(n * beta) else: Kcl = pcrs * cosd(n * beta) else: Kcl = pcrs * (cosd(n * beta) + sind(n * beta)) Fln[i] = SHCoef[term] * Kcl * Lnorm(l) ODFln = dict(zip(SHCoef.keys(), list(zip(SHCoef.values(), Fln)))) return ODFln
[docs]def polfcal(ODFln, SamSym, psi, gam): '''Perform a pole figure computation. Note that the the number of gam values must either be 1 or must match psi. Updated for numpy 1.8.0 ''' import pytexture as ptx PolVal = np.ones_like(psi) for term in ODFln: if abs(ODFln[term][1]) > 1.e-3: l, m, n = eval(term.strip('C')) psrs, dum = ptx.pyplmpsi(l, m, len(psi), psi) if SamSym in ['-1', '2/m']: if m: Ksl = RSQPI * psrs * (cosd(m * gam) + sind(m * gam)) else: Ksl = RSQPI * psrs / SQ2 else: if m: Ksl = RSQPI * psrs * cosd(m * gam) else: Ksl = RSQPI * psrs / SQ2 PolVal += ODFln[term][1] * Ksl return PolVal
[docs]def invpolfcal(ODFln, SGData, phi, beta): 'needs doc string' import pytexture as ptx invPolVal = np.ones_like(beta) for term in ODFln: if abs(ODFln[term][1]) > 1.e-3: l, m, n = eval(term.strip('C')) if SGData['SGLaue'] in ['m3', 'm3m']: Kcl = 0.0 for j in range(0, l + 1, 4): im = j // 4 pcrs, dum = ptx.pyplmpsi(l, j, len(beta), phi) Kcl += BOH['L=%d' % (l)][n - 1][im] * pcrs * cosd(j * beta) else: #all but cubic pcrs, dum = ptx.pyplmpsi(l, n, len(beta), phi) pcrs *= RSQPI if n == 0: pcrs /= SQ2 if SGData['SGLaue'] in [ 'mmm', '4/mmm', '6/mmm', 'R3mR', '3m1', '31m' ]: if SGData['SGLaue'] in ['3mR', '3m1', '31m']: if n % 6 == 3: Kcl = pcrs * sind(n * beta) else: Kcl = pcrs * cosd(n * beta) else: Kcl = pcrs * cosd(n * beta) else: Kcl = pcrs * (cosd(n * beta) + sind(n * beta)) invPolVal += ODFln[term][1] * Kcl return invPolVal
[docs]def textureIndex(SHCoef): 'needs doc string' Tindx = 1.0 for term in SHCoef: l = eval(term.strip('C'))[0] Tindx += SHCoef[term]**2 / (2.0 * l + 1.) return Tindx
# self-test materials follow. selftestlist = [] '''Defines a list of self-tests''' selftestquiet = True def _ReportTest(): 'Report name and doc string of current routine when ``selftestquiet`` is False' if not selftestquiet: import inspect caller = inspect.stack()[1][3] doc = eval(caller).__doc__ if doc is not None: print('testing ' + __file__ + ' with ' + caller + ' (' + doc + ')') else: print('testing ' + __file__() + " with " + caller) NeedTestData = True
[docs]def TestData(): array = np.array global NeedTestData NeedTestData = False global CellTestData # output from uctbx computed on platform darwin on 2010-05-28 CellTestData = [ # cell, g, G, cell*, V, V* [(4, 4, 4, 90, 90, 90), array([[1.60000000e+01, 9.79717439e-16, 9.79717439e-16], [9.79717439e-16, 1.60000000e+01, 9.79717439e-16], [9.79717439e-16, 9.79717439e-16, 1.60000000e+01]]), array([[6.25000000e-02, 3.82702125e-18, 3.82702125e-18], [3.82702125e-18, 6.25000000e-02, 3.82702125e-18], [3.82702125e-18, 3.82702125e-18, 6.25000000e-02]]), (0.25, 0.25, 0.25, 90.0, 90.0, 90.0), 64.0, 0.015625], # cell, g, G, cell*, V, V* [(4.0999999999999996, 5.2000000000000002, 6.2999999999999998, 100, 80, 130), array([[16.81, -13.70423184, 4.48533243], [-13.70423184, 27.04, -5.6887143], [4.48533243, -5.6887143, 39.69]]), array([[0.10206349, 0.05083339, -0.00424823], [0.05083339, 0.06344997, 0.00334956], [-0.00424823, 0.00334956, 0.02615544]]), (0.31947376387537696, 0.25189277536327803, 0.16172643497798223, 85.283666420376008, 94.716333579624006, 50.825714168082683), 100.98576357983838, 0.0099023858863968445], # cell, g, G, cell*, V, V* [(3.5, 3.5, 6, 90, 90, 120), array([[1.22500000e+01, -6.12500000e+00, 1.28587914e-15], [-6.12500000e+00, 1.22500000e+01, 1.28587914e-15], [1.28587914e-15, 1.28587914e-15, 3.60000000e+01]]), array([[1.08843537e-01, 5.44217687e-02, 3.36690552e-18], [5.44217687e-02, 1.08843537e-01, 3.36690552e-18], [3.36690552e-18, 3.36690552e-18, 2.77777778e-02]]), (0.32991443953692895, 0.32991443953692895, 0.16666666666666669, 90.0, 90.0, 60.000000000000021), 63.652867178156257, 0.015710211406520427], ] global CoordTestData CoordTestData = [ # cell, ((frac, ortho),...) (( 4, 4, 4, 90, 90, 90, ), [ ((0.10000000000000001, 0.0, 0.0), (0.40000000000000002, 0.0, 0.0)), ((0.0, 0.10000000000000001, 0.0), (2.4492935982947065e-17, 0.40000000000000002, 0.0)), ((0.0, 0.0, 0.10000000000000001), (2.4492935982947065e-17, -2.4492935982947065e-17, 0.40000000000000002)), ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999), (0.40000000000000013, 0.79999999999999993, 1.2)), ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001), (0.80000000000000016, 1.2, 0.40000000000000002)), ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001), (1.2, 0.80000000000000004, 0.40000000000000002)), ((0.5, 0.5, 0.5), (2.0, 1.9999999999999998, 2.0)), ]), # cell, ((frac, ortho),...) (( 4.1, 5.2, 6.3, 100, 80, 130, ), [ ((0.10000000000000001, 0.0, 0.0), (0.40999999999999998, 0.0, 0.0)), ((0.0, 0.10000000000000001, 0.0), (-0.33424955703700043, 0.39834311042186865, 0.0)), ((0.0, 0.0, 0.10000000000000001), (0.10939835193016617, -0.051013289294572106, 0.6183281045774256)), ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999), (0.069695941716497567, 0.64364635296002093, 1.8549843137322766)), ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001), (-0.073350319180835066, 1.1440160419710339, 0.6183281045774256)), ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001), (0.67089923785616512, 0.74567293154916525, 0.6183281045774256)), ((0.5, 0.5, 0.5), (0.92574397446582857, 1.7366491056364828, 3.0916405228871278)), ]), # cell, ((frac, ortho),...) (( 3.5, 3.5, 6, 90, 90, 120, ), [ ((0.10000000000000001, 0.0, 0.0), (0.35000000000000003, 0.0, 0.0)), ((0.0, 0.10000000000000001, 0.0), (-0.17499999999999993, 0.3031088913245536, 0.0)), ((0.0, 0.0, 0.10000000000000001), (3.6739403974420595e-17, -3.6739403974420595e-17, 0.60000000000000009)), ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999), (2.7675166561703527e-16, 0.60621778264910708, 1.7999999999999998)), ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001), (0.17500000000000041, 0.90932667397366063, 0.60000000000000009)), ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001), (0.70000000000000018, 0.6062177826491072, 0.60000000000000009)), ((0.5, 0.5, 0.5), (0.87500000000000067, 1.5155444566227676, 3.0)), ]), ] global LaueTestData #generated by GSAS LaueTestData = { 'R 3 m': [(4., 4., 6., 90., 90., 120.), ((1, 0, 1, 6), (1, 0, -2, 6), (0, 0, 3, 2), (1, 1, 0, 6), (2, 0, -1, 6), (2, 0, 2, 6), (1, 1, 3, 12), (1, 0, 4, 6), (2, 1, 1, 12), (2, 1, -2, 12), (3, 0, 0, 6), (1, 0, -5, 6), (2, 0, -4, 6), (3, 0, -3, 6), (3, 0, 3, 6), (0, 0, 6, 2), (2, 2, 0, 6), (2, 1, 4, 12), (2, 0, 5, 6), (3, 1, -1, 12), (3, 1, 2, 12), (1, 1, 6, 12), (2, 2, 3, 12), (2, 1, -5, 12)) ], 'R 3': [(4., 4., 6., 90., 90., 120.), ((1, 0, 1, 6), (1, 0, -2, 6), (0, 0, 3, 2), (1, 1, 0, 6), (2, 0, -1, 6), (2, 0, 2, 6), (1, 1, 3, 6), (1, 1, -3, 6), (1, 0, 4, 6), (3, -1, 1, 6), (2, 1, 1, 6), (3, -1, -2, 6), (2, 1, -2, 6), (3, 0, 0, 6), (1, 0, -5, 6), (2, 0, -4, 6), (2, 2, 0, 6), (3, 0, 3, 6), (3, 0, -3, 6), (0, 0, 6, 2), (3, -1, 4, 6), (2, 0, 5, 6), (2, 1, 4, 6), (4, -1, -1, 6), (3, 1, -1, 6), (3, 1, 2, 6), (4, -1, 2, 6), (2, 2, -3, 6), (1, 1, -6, 6), (1, 1, 6, 6), (2, 2, 3, 6), (2, 1, -5, 6), (3, -1, -5, 6))], 'P 3': [ (4., 4., 6., 90., 90., 120.), ((0, 0, 1, 2), (1, 0, 0, 6), (1, 0, 1, 6), (0, 0, 2, 2), (1, 0, -1, 6), (1, 0, 2, 6), (1, 0, -2, 6), (1, 1, 0, 6), (0, 0, 3, 2), (1, 1, 1, 6), (1, 1, -1, 6), (1, 0, 3, 6), (1, 0, -3, 6), (2, 0, 0, 6), (2, 0, -1, 6), (1, 1, -2, 6), (1, 1, 2, 6), (2, 0, 1, 6), (2, 0, -2, 6), (2, 0, 2, 6), (0, 0, 4, 2), (1, 1, -3, 6), (1, 1, 3, 6), (1, 0, -4, 6), (1, 0, 4, 6), (2, 0, -3, 6), (2, 1, 0, 6), (2, 0, 3, 6), (3, -1, 0, 6), (2, 1, 1, 6), (3, -1, -1, 6), (2, 1, -1, 6), (3, -1, 1, 6), (1, 1, 4, 6), (3, -1, 2, 6), (3, -1, -2, 6), (1, 1, -4, 6), (0, 0, 5, 2), (2, 1, 2, 6), (2, 1, -2, 6), (3, 0, 0, 6), (3, 0, 1, 6), (2, 0, 4, 6), (2, 0, -4, 6), (3, 0, -1, 6), (1, 0, -5, 6), (1, 0, 5, 6), (3, -1, -3, 6), (2, 1, -3, 6), (2, 1, 3, 6), (3, -1, 3, 6), (3, 0, -2, 6), (3, 0, 2, 6), (1, 1, 5, 6), (1, 1, -5, 6), (2, 2, 0, 6), (3, 0, 3, 6), (3, 0, -3, 6), (0, 0, 6, 2), (2, 0, -5, 6), (2, 1, -4, 6), (2, 2, -1, 6), (3, -1, -4, 6), (2, 2, 1, 6), (3, -1, 4, 6), (2, 1, 4, 6), (2, 0, 5, 6), (1, 0, -6, 6), (1, 0, 6, 6), (4, -1, 0, 6), (3, 1, 0, 6), (3, 1, -1, 6), (3, 1, 1, 6), (4, -1, -1, 6), (2, 2, 2, 6), (4, -1, 1, 6), (2, 2, -2, 6), (3, 1, 2, 6), (3, 1, -2, 6), (3, 0, 4, 6), (3, 0, -4, 6), (4, -1, -2, 6), (4, -1, 2, 6), (2, 2, -3, 6), (1, 1, 6, 6), (1, 1, -6, 6), (2, 2, 3, 6), (3, -1, 5, 6), (2, 1, 5, 6), (2, 1, -5, 6), (3, -1, -5, 6)) ], 'P 3 m 1': [ (4., 4., 6., 90., 90., 120.), ((0, 0, 1, 2), (1, 0, 0, 6), (1, 0, -1, 6), (1, 0, 1, 6), (0, 0, 2, 2), (1, 0, -2, 6), (1, 0, 2, 6), (1, 1, 0, 6), (0, 0, 3, 2), (1, 1, 1, 12), (1, 0, -3, 6), (1, 0, 3, 6), (2, 0, 0, 6), (1, 1, 2, 12), (2, 0, 1, 6), (2, 0, -1, 6), (0, 0, 4, 2), (2, 0, -2, 6), (2, 0, 2, 6), (1, 1, 3, 12), (1, 0, -4, 6), (1, 0, 4, 6), (2, 0, 3, 6), (2, 1, 0, 12), (2, 0, -3, 6), (2, 1, 1, 12), (2, 1, -1, 12), (1, 1, 4, 12), (2, 1, 2, 12), (0, 0, 5, 2), (2, 1, -2, 12), (3, 0, 0, 6), (1, 0, -5, 6), (3, 0, 1, 6), (3, 0, -1, 6), (1, 0, 5, 6), (2, 0, 4, 6), (2, 0, -4, 6), (2, 1, 3, 12), (2, 1, -3, 12), (3, 0, -2, 6), (3, 0, 2, 6), (1, 1, 5, 12), (3, 0, -3, 6), (0, 0, 6, 2), (2, 2, 0, 6), (3, 0, 3, 6), (2, 1, 4, 12), (2, 2, 1, 12), (2, 0, 5, 6), (2, 1, -4, 12), (2, 0, -5, 6), (1, 0, -6, 6), (1, 0, 6, 6), (3, 1, 0, 12), (3, 1, -1, 12), (3, 1, 1, 12), (2, 2, 2, 12), (3, 1, 2, 12), (3, 0, 4, 6), (3, 1, -2, 12), (3, 0, -4, 6), (1, 1, 6, 12), (2, 2, 3, 12)) ], 'P 3 1 m': [ (4., 4., 6., 90., 90., 120.), ((0, 0, 1, 2), (1, 0, 0, 6), (0, 0, 2, 2), (1, 0, 1, 12), (1, 0, 2, 12), (1, 1, 0, 6), (0, 0, 3, 2), (1, 1, -1, 6), (1, 1, 1, 6), (1, 0, 3, 12), (2, 0, 0, 6), (2, 0, 1, 12), (1, 1, 2, 6), (1, 1, -2, 6), (2, 0, 2, 12), (0, 0, 4, 2), (1, 1, -3, 6), (1, 1, 3, 6), (1, 0, 4, 12), (2, 1, 0, 12), (2, 0, 3, 12), (2, 1, 1, 12), (2, 1, -1, 12), (1, 1, -4, 6), (1, 1, 4, 6), (0, 0, 5, 2), (2, 1, -2, 12), (2, 1, 2, 12), (3, 0, 0, 6), (1, 0, 5, 12), (2, 0, 4, 12), (3, 0, 1, 12), (2, 1, -3, 12), (2, 1, 3, 12), (3, 0, 2, 12), (1, 1, 5, 6), (1, 1, -5, 6), (3, 0, 3, 12), (0, 0, 6, 2), (2, 2, 0, 6), (2, 1, -4, 12), (2, 0, 5, 12), (2, 2, -1, 6), (2, 2, 1, 6), (2, 1, 4, 12), (3, 1, 0, 12), (1, 0, 6, 12), (2, 2, 2, 6), (3, 1, -1, 12), (2, 2, -2, 6), (3, 1, 1, 12), (3, 1, -2, 12), (3, 0, 4, 12), (3, 1, 2, 12), (1, 1, -6, 6), (2, 2, 3, 6), (2, 2, -3, 6), (1, 1, 6, 6)) ], } global FLnhTestData FLnhTestData = [{ 'C(4,0,0)': (0.965, 0.42760447), 'C(2,0,0)': (1.0122, -0.80233610), 'C(2,0,2)': (0.0061, 8.37491546E-03), 'C(6,0,4)': (-0.0898, 4.37985696E-02), 'C(6,0,6)': (-0.1369, -9.04081762E-02), 'C(6,0,0)': (0.5935, -0.18234928), 'C(4,0,4)': (0.1872, 0.16358127), 'C(6,0,2)': (0.6193, 0.27573633), 'C(4,0,2)': (-0.1897, 0.12530720) }, [1, 0, 0]]
[docs]def test0(): if NeedTestData: TestData() msg = 'test cell2Gmat, fillgmat, Gmat2cell' for (cell, tg, tG, trcell, tV, trV) in CellTestData: G, g = cell2Gmat(cell) assert np.allclose(G, tG), msg assert np.allclose(g, tg), msg tcell = Gmat2cell(g) assert np.allclose(cell, tcell), msg tcell = Gmat2cell(G) assert np.allclose(tcell, trcell), msg
if __name__ == '__main__': selftestlist.append(test0)
[docs]def test1(): 'test cell2A and A2Gmat' _ReportTest() if NeedTestData: TestData() msg = 'test cell2A and A2Gmat' for (cell, tg, tG, trcell, tV, trV) in CellTestData: G, g = A2Gmat(cell2A(cell)) assert np.allclose(G, tG), msg assert np.allclose(g, tg), msg
if __name__ == '__main__': selftestlist.append(test1)
[docs]def test2(): 'test Gmat2A, A2cell, A2Gmat, Gmat2cell' _ReportTest() if NeedTestData: TestData() msg = 'test Gmat2A, A2cell, A2Gmat, Gmat2cell' for (cell, tg, tG, trcell, tV, trV) in CellTestData: G, g = cell2Gmat(cell) tcell = A2cell(Gmat2A(G)) assert np.allclose(cell, tcell), msg
if __name__ == '__main__': selftestlist.append(test2)
[docs]def test3(): 'test invcell2Gmat' _ReportTest() if NeedTestData: TestData() msg = 'test invcell2Gmat' for (cell, tg, tG, trcell, tV, trV) in CellTestData: G, g = invcell2Gmat(trcell) assert np.allclose(G, tG), msg assert np.allclose(g, tg), msg
if __name__ == '__main__': selftestlist.append(test3)
[docs]def test4(): 'test calc_rVsq, calc_rV, calc_V' _ReportTest() if NeedTestData: TestData() msg = 'test calc_rVsq, calc_rV, calc_V' for (cell, tg, tG, trcell, tV, trV) in CellTestData: assert np.allclose(calc_rV(cell2A(cell)), trV), msg assert np.allclose(calc_V(cell2A(cell)), tV), msg
if __name__ == '__main__': selftestlist.append(test4)
[docs]def test5(): 'test A2invcell' _ReportTest() if NeedTestData: TestData() msg = 'test A2invcell' for (cell, tg, tG, trcell, tV, trV) in CellTestData: rcell = A2invcell(cell2A(cell)) assert np.allclose(rcell, trcell), msg
if __name__ == '__main__': selftestlist.append(test5)
[docs]def test6(): 'test cell2AB' _ReportTest() if NeedTestData: TestData() msg = 'test cell2AB' for (cell, coordlist) in CoordTestData: A, B = cell2AB(cell) for (frac, ortho) in coordlist: to = np.inner(A, frac) tf = np.inner(B, to) assert np.allclose(ortho, to), msg assert np.allclose(frac, tf), msg to = np.sum(A * frac, axis=1) tf = np.sum(B * to, axis=1) assert np.allclose(ortho, to), msg assert np.allclose(frac, tf), msg
if __name__ == '__main__': selftestlist.append(test6)
[docs]def test7(): 'test GetBraviasNum(...) and GenHBravais(...)' _ReportTest() import os.path import sys import GSASIIspc as spc testdir = os.path.join( os.path.split(os.path.abspath(__file__))[0], 'testinp') if os.path.exists(testdir): if testdir not in sys.path: sys.path.insert(0, testdir) import sgtbxlattinp derror = 1e-4 def indexmatch(hklin, hkllist, system): for hklref in hkllist: hklref = list(hklref) # these permutations are far from complete, but are sufficient to # allow the test to complete if system == 'cubic': permlist = [ (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), ] elif system == 'monoclinic': permlist = [(1, 2, 3), (-1, 2, -3)] else: permlist = [(1, 2, 3)] for perm in permlist: hkl = [abs(i) * hklin[abs(i) - 1] / i for i in perm] if hkl == hklref: return True if [-i for i in hkl] == hklref: return True else: return False for key in sgtbxlattinp.sgtbx7: spdict = spc.SpcGroup(key) cell = sgtbxlattinp.sgtbx7[key][0] system = spdict[1]['SGSys'] center = spdict[1]['SGLatt'] bravcode = GetBraviasNum(center, system) g2list = GenHBravais(sgtbxlattinp.dmin, bravcode, cell2A(cell)) assert len(sgtbxlattinp.sgtbx7[key][1]) == len( g2list), 'Reflection lists differ for %s' % key for h, k, l, d, num in g2list: for hkllist, dref in sgtbxlattinp.sgtbx7[key][1]: if abs(d - dref) < derror: if indexmatch(( h, k, l, ), hkllist, system): break else: assert 0, 'No match for %s at %s (%s)' % ((h, k, l), d, key)
if __name__ == '__main__': selftestlist.append(test7)
[docs]def test8(): 'test GenHLaue' _ReportTest() import GSASIIspc as spc import sgtbxlattinp derror = 1e-4 dmin = sgtbxlattinp.dmin def indexmatch(hklin, hklref, system, axis): # these permutations are far from complete, but are sufficient to # allow the test to complete if system == 'cubic': permlist = [ (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), ] elif system == 'monoclinic' and axis == 'b': permlist = [(1, 2, 3), (-1, 2, -3)] elif system == 'monoclinic' and axis == 'a': permlist = [(1, 2, 3), (1, -2, -3)] elif system == 'monoclinic' and axis == 'c': permlist = [(1, 2, 3), (-1, -2, 3)] elif system == 'trigonal': permlist = [(1, 2, 3), (2, 1, 3), (-1, -2, 3), (-2, -1, 3)] elif system == 'rhombohedral': permlist = [(1, 2, 3), (2, 3, 1), (3, 1, 2)] else: permlist = [(1, 2, 3)] hklref = list(hklref) for perm in permlist: hkl = [abs(i) * hklin[abs(i) - 1] / i for i in perm] if hkl == hklref: return True if [-i for i in hkl] == hklref: return True return False for key in sgtbxlattinp.sgtbx8: spdict = spc.SpcGroup(key)[1] cell = sgtbxlattinp.sgtbx8[key][0] Axis = spdict['SGUniq'] system = spdict['SGSys'] g2list = GenHLaue(dmin, spdict, cell2A(cell)) #if len(g2list) != len(sgtbxlattinp.sgtbx8[key][1]): # print 'failed',key,':' ,len(g2list),'vs',len(sgtbxlattinp.sgtbx8[key][1]) # print 'GSAS-II:' # for h,k,l,d in g2list: print ' ',(h,k,l),d # print 'SGTBX:' # for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: print ' ',hkllist,dref assert len(g2list) == len( sgtbxlattinp.sgtbx8[key][1]), ('Reflection lists differ for %s' % key) #match = True for h, k, l, d in g2list: for hkllist, dref in sgtbxlattinp.sgtbx8[key][1]: if abs(d - dref) < derror: if indexmatch(( h, k, l, ), hkllist, system, Axis): break else: assert 0, 'No match for %s at %s (%s)' % ((h, k, l), d, key)
#match = False #if not match: #for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: print ' ',hkllist,dref #print center, Laue, Axis, system if __name__ == '__main__': selftestlist.append(test8)
[docs]def test9(): 'test GenHLaue' _ReportTest() import GSASIIspc as G2spc if NeedTestData: TestData() for spc in LaueTestData: data = LaueTestData[spc] cell = data[0] hklm = np.array(data[1]) H = hklm[-1][:3] hklO = hklm.T[:3].T A = cell2A(cell) dmin = 1. / np.sqrt(calc_rDsq(H, A)) SGData = G2spc.SpcGroup(spc)[1] hkls = np.array(GenHLaue(dmin, SGData, A)) hklN = hkls.T[:3].T #print spc,hklO.shape,hklN.shape err = True for H in hklO: if H not in hklN: print('%d %s' % (H, ' missing from hkl from GSASII')) err = False assert (err)
if __name__ == '__main__': selftestlist.append(test9) if __name__ == '__main__': # run self-tests selftestquiet = False for test in selftestlist: test() print("OK")