Nucleation and growth reactions in atomic layer deposition (ALD) using trimethylaluminum (TMA):

TMA-monomer vs. -dimer reactions

Thomas J. L. Mustard1, Mathew D. Halls2, Alexander Goldberg1, H. Shaun Kwak2, Jacob L. Gavartin1, Thomas E. Seidel4, and Yves J. Chabal5

1Materials Science, Schrödinger Inc., San Diego, CA, United States.; 2Materials Science, Schrödinger Inc., Boston, MA, United States.; 3Materials Science, Schrödinger Inc., Cambridge, Cambridgeshire, United Kingdom.; 4Seitek5, Palm Coast, FL, United States.; 5Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, United States.

Introduction

The ALD of Al\textsubscript{2}O\textsubscript{3} using TMA is one of the most widely studied ALD reactions; both experimentally and computationally. Although TMA-ALD processes are considered well understood, details of the fundamental chemistry involved in the elementary reactions have not been fully established. There have been a significant number of reports using Density Functional Theory (DFT) to gain insight into the mechanism, energetics and atomic details of reactions in TMA-ALD processes. Despite experimental and computational evidence for TMA-dimer formation in the vapor-phase, all previous computational ALD investigations have represented the TMA precursor as a monomer co-reactant. TMA dimerizes through formation of three-centered, two-electron bonds with a binding energy of ca. 20 kcal/mol. In this work, the effect of the TMA-dimer precursor is elucidated. The TMA-ALD half-reactions for homopropagation and heterodeposition of Al\textsubscript{2}O\textsubscript{3} are reinvestigated for both monomer and dimer precursor states using DFT.

Relative Reactivity: TMA vs H\textsubscript{2}O

The initial deposition of Al\textsubscript{2}O\textsubscript{3} on hydrogen-terminated silicon by ALD could require nucleation through exposure to either the Al- or O-precursor (TMA or H\textsubscript{2}O, respectively). To determine the differential reactivity for Al\textsubscript{2}O\textsubscript{3} nucleation on H\textsubscript{2}O, the kinetic barrier for initial reaction between TMA and H\textsubscript{2}O with H\textsubscript{2}O was calculated with DFT using Jaguar. The calculated kinetic barriers for TMA and H\textsubscript{2}O with H\textsubscript{2}O(100) indicate significant preference for TMA. The ∆G\textsubscript{‡} for the Al-precursor reaction is predicted to be lower than the O-precursor reaction by 9.1 kcal/mol. The kinetic selectivity for the Al-precursor reaction is predicted to be lower than the O-precursor reaction by 9.1 kcal/mol. The kinetic selectivity for the Al-precursor reaction is predicted to be lower than the O-precursor reaction by 9.1 kcal/mol.

TMA vs DTMA

DFT correctly predicts both the enthalpic binding energy of ca. 20 kcal/mol and IR vibrational spectra of the TMA-dimer (DTMA). Additionally, the free energy of TMA dimerization was computed at 1.0, 0.1, 0.01 and 0.001 atm. For all pressures the vibrational spectra of the TMA-dimer (DTMA). Additionally, the free energy of TMA on the termination of the silicon surface. For hydrogen terminated Si(100), TMA experimental and computational evidence for TMA-dimer formation in the vapor-phase are reinvestigated for both monomer and dimer precursor states using DFT.

TMA – H-Si(100)

\[\Delta G^\ddagger = 37.8 \text{ kcal/mol} \]

TMTA – H-Si(100)

\[\Delta G^\ddagger = 47.8 \text{ kcal/mol} \]

TMA/DTMA Al\textsubscript{2}O\textsubscript{3} Growth

After nucleation all subsequent steps are growth of the Al\textsubscript{2}O\textsubscript{3} film. The kinetic barriers between TMA with Al\textsubscript{2}O\textsubscript{3} (Al growth) and H\textsubscript{2}O with H\textsubscript{2}O(AlMe\textsubscript{3}) (O growth) were calculated. The calculated Al growth kinetic barriers show significant preference for DTMA over TMA, with a predicted ∆G\ddagger preference of 14.0 kcal/mol. Additionally, both O growth steps have a similar kinetic barrier at 22.9 and 25.2 kcal/mol.

References

3. All geometries and energies calculated with B3LYP/LACVP**/M06-2X/LACVP**.
4. Si bonded H removed for clarity.