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Abstract
With the advent of more powerful hardware and methods, 
the use of machine learning (ML) methods has seen a 
significant upsurge in chemistry-related applications 
recently. Specifically in drug discovery, the prediction of 
ADMET (absorption, distribution, metabolism, excretion 
and toxicity) properties is a main target for ML applications. 
Herein, we present performance metrics for Schrödinger’s 
automated ML model building engine, DeepAutoQSAR, on 
the ADMET subset of the Therapeutic Data Commons (TDC) 
— a large collection of public data for ML model building 
and benchmarking. We also compare the performance of 
DeepAutoQSAR to the performance of two open source 
projects, namely ChemProp and DeepPurpose. 

DeepAutoQSAR is among the top performing methods in 
20 of the 22 investigated cases, clearly outperforming the 
other methods in 9 of those. For the other 11 cases, at 
least one of the other tested methods performs similarly. 
We believe that continuous development and further 
improvement of DeepAutoQSAR, in accuracy, robustness 
to chemical data shift and label efficiency will enable faster 
and more cost effective means of drug discovery, ultimately 
leading to the introduction of novel therapeutics. 



3

Introduction
It is widely recognized that the ADMET (absorption, 
distribution, metabolism, excretion and toxicity) profile 
of novel molecules plays a key role in the successful 
development of new drugs. This is reinforced by the 
amount of time and effort spent both in academia and 
the pharmaceutical industry to develop reliable models to 
measure and predict numerous related endpoints1. Due 
to the potentially catastrophic impact of an unfavorable 
ADMET profile in the later stages of drug development, a 
common goal is to identify potential issues as early  
as possible.

With the rise of ultra-large on-demand libraries and DNA 
encoded libraries (for example Enamine REAL Space 
or WuXi LabNetwork), early identification of liabilities 
requires methods that are computationally fast, cheap, 
and accurate enough to evaluate hundreds of millions of 
compounds without discarding potentially good candidates. 
This obviously precludes the use of experimental in vivo 
or even in vitro methods. Modern machine learning (ML) 
approaches, often coined artificial intelligence (AI), can 
easily process millions of molecules on short timescales 
and low computational costs with acceptable accuracy.

In contrast to physics-based in silico methods, ML/AI 
methods require high fidelity data to be trained to predict 
a given endpoint. High quality training data is often 
unavailable; data need to be clean and well-curated, and 
datasets in chemistry applications are often smaller than 
those used in other domains like ML on images or text. 
These strict data requirements can limit the application 
of more complex ML/AI approaches since there is often 

insufficient amounts of training data to fit complex and 
accurate models.

However, recognizing the importance of profiling ADMET 
properties over the past decades, large pharmaceutical 
companies have generated a wealth of data which is 
often unfortunately non-public and exclusively applied for 
internal programs. Public data is rarer, but there are efforts 
to collect and aggregate public data 2 and also to share non-
public data in smart ways to improve existing models while 
retaining data confidentiality 3.

The successes of deep learning (DL) approaches have led 
to a renaissance of ML/AI in chemistry applications, with 
a large number of both open-source and commercial 
software to pick from when targeting ADMET endpoints. 
While open-source software oftentimes can profit from 
faster development cycles and thus implements new 
scientific insights more quickly, application is often limited 
to domain experts. On the other hand, commercial 
software has the benefits of structured quality assurance 
(QA), documentation and support, and comes coupled with 
comprehensive user interfaces which significantly lower the 
barrier to entry for non-experts.

In this paper, we will take a closer look at the performance 
of two of the more popular open-source packages, 
ChemProp and DeepPurpose, and Schrödinger’s ML/AI 
package DeepAutoQSAR, demonstrating their comparative 
performance on a recently published set of benchmarks.

 
Description of Datasets
In an effort to illustrate the performance differences 
between ML methods on relevant ADMET problems, we 
show model performance on a variety of datasets that 
represent both idealized, data-rich conditions and more 
limited real-world datasets. The variance in dataset size 
and diversity serves two purposes: firstly, we aim to explore 
gaps in benchmark performance in cases where plentiful 
data facilitates the training of expressive ML models that 
can take advantage of rich datasets. For these problems, 
models must be flexible enough to capture complex 
patterns in the data, as larger datasets typically contain 
more diverse chemical matter than is observed in real-
world ADMET datasets. 

Our second type of dataset is more limited, a challenge 
which forces models to learn generalizable rules from 
smaller sets of examples. These datasets, many of which 
come from publicly available data-dumps released by large 
pharmaceutical companies, test ML methods’ abilities 

to provide accurate predictions given small amounts 
of training data with significant selection biases. Unlike 
the larger datasets, these real world data are limited 
in chemical diversity, and often contain only a small 
number of chemical series sharing common scaffolds. 
Among compounds with common cores, individual data 
points may only differ by minor modifications, changes 
that reflect developing project needs over the discovery 
effort’s trajectory 4. These training data present a particular 
challenge, and offer more relevant insight into how 
ML models may impact decision making within a drug 
discovery campaign.

For both of these problem types, we report ML model 
performance on the Therapeutic Data Commons’ (TDC) 
ADMET and Tox prediction challenges, a collection of 
datasets sourced from existing public literature  
and databases 2.



4

TDC ADMET
Datasets from the TDC’s ADME and Toxicity single instance 
prediction problems are some of the most comprehensive 
and well curated ADMET datasets available. The collection 
of 21 ADME and 8 Tox datasets contains various endpoints 
of practical interest, such as compound lipophilicity, 
aqueous solubility, and many other experimental 
endpoints. Many of these datasets have been aggregated 
by the TDC contributors from other benchmarks 5, existing 
databases 6, and previously published literature. 

Of the available datasets, we choose a subset of 18 ADME 
and 4 Tox (the “ADMET Benchmark Group” as defined in 
the TDC publication) datasets to run our benchmarks.  

The 18 ADME tasks are composed of 6 absorption 
endpoints, 3 distribution endpoints, 6 metabolism 
endpoints, and 3 excretion endpoints. The associated 
table 1 contains short descriptions of the relevant 
datasets. Additionally tables 2 (regression) and 3 
(classification) show per-dataset information indicating 
the number of compounds, the associated performance 
metric as decided by the TDC benchmark authors, and  
the type of data split considered. Please consult 2 for 
a more thorough description of the datasets and their 
sources, and for further information on the impact of 
these datasets.

Dataset Abbr. Dataset Type Dataset Description

Caco2 Absorption Caco-2 Effective Permeability

HIA Absorption Human Intestinal Absorption

Bioav Absorption Oral Bioavailability

Pgp Absorption P-glycoprotein Inhibition

Lipo Absorption Lipophilicity

AqSol Absorption Aqueous Solubility

BBB Distribution Blood Brain Barrier

PPBR Distribution Plasma Protein Binding Rate

VDss Distribution Volume of Distribution

CYP2C9 Inhibition Metabolism CYP P450 2C9 Inhibition

CYP2D6 Inhibition Metabolism CYP P450 2D6 Inhibition

CYP3A4 Inhibition Metabolism CYP P450 3A4 Inhibition

CYP2C9 Substrate Metabolism CYP P450 2C9 Substrate

CYP2D6 Substrate Metabolism CYP P450 2D6 Substrate

CYP3A4 Substrate Metabolism CYP P450 3A4 Substrate

Half Life Excretion Terminal Phase Half Life

CL-Hepa Excretion Hepatocyte Clearance

CL-Micro Excretion Microsome Clearance

LD50 Toxicity Acute Toxicity LD50

hERG Toxicity hERG Inhibition

Ames Toxicity Ames Mutagenicity

DILI Toxicity Drug Induced Liver Injury

Table 1: The collection of ADMET datasets sourced from the TDC data repository that we consider for model benchmarking. Provided are the dataset 
abbreviation codes, the ADMET classification, and a high level description of the prediction task.
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Table 2: Regression datasets from the TDC ADMET collection. Here we give information on dataset size, accuracy measurement method, and train/test split 
selection method.

Dataset Num Compounds Metric Split

Caco2 906 MAE Scaffold

Lipo 4200 MAE Scaffold

AqSol 9982 MAE Scaffold

PPBR 1797 MAE Scaffold

VDss 1130 Spearman Scaffold

Half Life 667 Spearman Scaffold

CL-Hepa 1020 Spearman Scaffold

CL-Micro 1102 Spearman Scaffold

LD50 7385 MAE Scaffold

Dataset Num Compounds Metric Split

HIA 578 AUROC Scaffold

Pgp 1212 AUROC Scaffold

Bioav 640 AUROC Scaffold

BBB 1975 AUROC Scaffold

CYP2C9 Inhibition 12092 AUPRC Scaffold

CYP2D6 Inhibition 13130 AUPRC Scaffold

CYP3A4 Inhibition 12328 AUPRC Scaffold

CYP2C9 Substrate 666 AUPRC Scaffold

CYP2D6 Substrate 664 AUPRC Scaffold

CYP3A4 Substrate 667 AUROC Scaffold

hERG 648 AUROC Scaffold

Ames 7255 AUROC Scaffold

DILI 475 AUROC Scaffold

Table 3: Classification datasets from the TDC ADMET collection. Here we give information on dataset size, accuracy measurement method, and train/test split 
selection method
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Methods
Here we provide descriptions of the supervised learning 
models examined in our experiments. All the modeling 
packages we discuss implement regression and 
classification methods using a combination of classical 
machine learning methods as well as variations of deep 
neural networks. Owing to the intricacies of each method, 
we provide only a general overview of features and direct 
readers to links in our supplementary material for more 
information. 

DeepAutoQSAR

DeepAutoQSAR is one of Schrödinger’s tools for 
supervised learning on molecules. The program constructs 
ensembles of machine learning models to predict 
regression and binary classification targets given a 
collection of labeled examples. DeepAutoQSAR attempts 
to do this in an automated fashion, meaning that models 
are constructed without manual fine-tuning or human 
intervention in model selection. This type of machine 
learning tool is an example of AutoML, as DeepAutoQSAR 
requires minimal domain experience to use in exchange 
for increased computation time 7.

Over the course of training, DeepAutoQSAR will fit a 
collection of models with different architectures and 
hyperparameters, scoring each model configuration 
via cross validation on the supplied input dataset. The 
program then uses the cross validation scores associated 
with each model to rank its fitness for selection into an 
ensemble of well performing models. After a fixed, user-
specified amount of training time, the best performing 
ML models are saved for later inference. At inference 
time, the stored models in the ensemble are inferenced 
independently, and their predictions are averaged to 
produce a final estimate. For regression, this result is an 
average of the continuous values contributed by each sub-
model; for binary classification, each sub-model outputs a 
continuous value between zero and one which represents 
the probability of a one in a Bernoulli trial. 

The ML models eligible for selection to DeepAutoQSAR’s 
ensemble are deep neural networks (DNN), gradient 
boosted trees (XGBoost), and Random Forest (RF) models. 
The deep neural networks can be further classified by the 
types of molecular representations considered: dense 
neural networks take ECFP (Morgan) bit fingerprints as 
inputs, whereas Graph Convolutional (GNN) or Message 
Passing Neural Networks (MPNN) operate on featurized 
graph representations of molecules. These models 
are trained with standard gradient-based optimization 
techniques, such as variants of stochastic gradient 
descent, or tree pruning methods for RF and XGBoost.

To account for alternative methods of molecular 
featurization, DeepAutoQSAR implements several 
schemes for representing molecules as vectors amenable 
to machine learning. For per-molecule vectorization, 
DeepAutoQSAR uses ECFPs with a range of atomic 
neighborhood radii and hash-lengths, yielding a large 
number of possible featurizations for a given molecule. 
These ECFPs are further modified by including features 
dictating RS chirality, or additional features specified by 
the user. The method also featurizes molecules as vectors 
of cheaply computed properties via the DescriptaStorus, 
an encoding of molecules into 200 rdkit properties with 
normalized values. These property vectors can be utilized 
by the same ML models that operate on the ECFPs (dense 
NNs, XGBoost, RF) 8. 

Per-atom featurizations for GNN and MPNN approaches 
include one-hot encodings of atomic number, implicit 
valence, formal charge, atomic degree, number of radical 
electrons, hybridization, and aromaticity. These binary 
feature vectors assigned to each heavy atom in the ligand 
are further complimented by RS chirality features and/or 
user specified additional features. 

DeepAutoQSAR selects the independent ensemble 
members by performing Bayesian Optimization (BO) 
trials over each model architecture, thereby optimizing 
the hyper-parameters of each eligible model 9. The 
BO trials begin with Sobol quasi-random sampling of 
the predefined space of hyper-parameters; the initial 
random samples provide training data to fit Gaussian 
Process Regressors that model the mean cross validation 
performance as a function of the selected hyper-
parameters. These GPs serve as surrogate models to BO 
acquisition functions which define pointwise estimates 
of the cross validation performance as a function 
of selected hyper-parameters. The optima of these 
acquisition functions become the next suggested model 
parameterizations to evaluate in cross validation.

Along with model training, selection, and validation, 
DeepAutoQSAR performs data normalization and 
transformation. Data are standardized to zero mean and 
unit variance when applicable, and log-transformations 
are considered further hyper-parameters if all target 
values are greater than zero. 

In addition to the standard supervised learning features, 
DeepAutoQSAR contains functionality for transfer learning 
via model stacking, model checkpointing and compression, 
and a large collection of visualizations and performance 
reporting 10. Many of these functions are not relevant to 
the present benchmark but are vital for DeepAutoQSAR’s 
successful deployments to internal Schrödinger projects.
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Figure 1: DeepAutoQSAR Graphical Abstract: The program workflow for DeepAutoQSAR begins with data preprocessing and cross validation splitting, as well 
as set-up processes for model ensemble selection. Independent ML models are then trained to optimize performance on held-out molecules, yielding a final 
model ensemble with robust performance at inference time. 
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ChemProp

ChemProp is an open-source tool which uses message 
passing neural networks for molecular property 
prediction 11. Like DeepAutoQSAR, ChemProp trains an 
ensemble of graph convolutional deep neural networks, 
optimizes hyper-parameters with Bayesian Optimization, 
and includes rdkit descriptors as features via the 
DescriptaStorus. 

For it’s core ML model, ChemProp leverages a custom 
network (D-MPNN) which uses both atom and bond 
features to construct molecular representations. 
ChemProp’s D-MPNN aggregates messages via directed 
edges along the molecular graph, producing an update 
step which passes messages from bond-to-bond rather 
than from atom-to-atom.

DeepPurpose

DeepPurpose is a “deep learning based molecular 
modeling and prediction toolkit on drug-target interaction 
prediction, compound property prediction, protein-protein 
interaction prediction, and protein function prediction” 
that is freely available on Github 12. In this study we 
employed it in three different flavors: Two of them use 
multi-layer perceptrons (MLP) on different fingerprints 
(Morgan and RDKit2D), and are dubbed DeepPurpose 
(Morgan + MLP) and DeepPurpose (RDKit2D + MLP), 
respectively. The third approach uses the DeepPurpose 
implementation of a convolutional neural network (CNN) 
that featurizes input SMILES strings, and will be called 
DeepPurpose (CNN) in this study. Details on the different 
methods can be found in the DeepPurpose publication 12. 
For our results, we used performance scores from the TDC 
leaderboard rather than re-run DeepPurpose in efforts to 
maintain consistency with existing results 13. Though not 
included in the published performance figures for the TDC 
benchmark, DeepPurpose has, in the interim, added more 
sophisticated features such as Bayesian Optimization for 
hyper-parameter selection. These additional features are 
described in the documentation and Github pages. 

 

Results
TDC Results

Tables 4-8 summarize the results for the TDC datasets 
and the different ML approaches investigated herein. 
The datasets are grouped by endpoint type, as suggested 
in the original publication: Adsorption, Distribution, 
Metabolism, Excretion and Toxicity. We applied the same 
performance metrics as the TDC challenge to enable 
comparison to the original data and future submissions 
to the TDC leaderboard:  Mean Absolute Error (MAE, 
lower values are better), Spearman’s Rank Correlation 
Coefficient (Spearman, higher values are better), Area 
Under the Receiver Operator Curve (AUROC, higher values 
are better), and Area Under the Precision Recall Curve 
(AUPRC, higher values are better). Arrows next to the 
metrics indicate whether higher (↑) or lower (↓) values 
indicate improved performance. For information on the 
abbreviations used for the specific datasets please refer to 
Table 1 or the respective paragraphs below.

For stability, all methods are trained and evaluated 5 
times with different random seeds. These separate 
instantiations are scored independently and we report 
the mean and standard deviation scores as mean score 
± std score. Note that these reported uncertainties 
are unrelated to the models’ estimations of epistemic 
uncertainty derived from internal mechanisms such as 
ensembling. We leave such an analysis as a future project. 

To enable quick comparison and easy identification of the 
top performing method for each dataset, the best result 
for each is always bolded in the respective column. Here, 
we consider a result to be significantly superior when 
there are no other scores within the error range of the top 
performing method.
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Table 4: Performance results on absorption datasets for DeepAutoQSAR, ChemProp, and DeepPurpose models. Each entry details mean performance and 
standard deviation across 5 trials. 

Model (Metric) Bioav (AUROC, ↑) HIA (AUROC, ↑) Pgp (AUROC, ↑)

DeepAutoQSAR 0.682 ± .011 0.982 ± .003 0.917 ± .001

RDKit2D + MLP 0.672 ± .021 0.972 ± .008 0.918 ± .007

Morgan + MLP 0.581 ± .086 0.807 ± .072 0.880 ± .006

CNN 0.613 ± .013 0.869 ± .026 0.908 ± .012

ChemProp 0.623 ± .025 0.979 ± .003 0.902 ± .017

Model (Metric) Caco2 (MAE, ↓) Lipo (MAE, ↓) AqSol (MAE, ↓)

DeepAutoQSAR 0.306 ± .012 0.476 ± .015 0.784 ± .023

RDKit2D + MLP 0.393 ± .024 0.574 ± .017 0.827 ± .047

Morgan + MLP 0.908 ± .060 0.701 ± .009 1.203 ± .019

CNN 0.446 ± .036 0.743 ± .020 1.023 ± .023

ChemProp 0.390 ± .045 0.437 ± .010 0.820 ± 0.012

Absorption endpoints 

Table 4 summarizes the results of the endpoints 
associated with Absorption, comprising the Caco2, HIA, 
Pgp, Bioav, Lipo and AqSol datasets.

Bioav

DeepAutoQSAR and DeepPurpose (RDKit2D + MLP) are 
tied on the oral bioavailability (Bioav) data, with areas 
under the receiver operating characteristic curve (AUROC) 
of 0.682 ± 0.011 and 0.672 ± 0.021, respectively. The worst 
performer on the set is DeepPurpose (Morgan + MLP) with 
an AUROC of 0.581 ± 0.086. The gap between the best and 
worst methods is a rather low ~ 0.1 on a total scale of 0 to 
1. Dataset size is on the lower end with 640 data points.

HIA

For the human intestinal absorption data (HIA),  
DeepAutoQSAR shows the best performance with an area 
under the receiver operating characteristic curve (AUROC) 
of 0.982 ± 0.003. DeepPurpose (Morgan + MLP) performs 
worst with an AUROC of 0.807 ± 0.072. The spread of the 
methods is 0.18 on a total scale of 0 to 1. The dataset is 
one of the smallest investigated here with only 578 drugs.

Pgp

For the p-glycoprotein inhibition dataset, DeepAutoQSAR 
and DeepPurpose (RDKit2D + MLP) are tied for first place 
with areas under the receiver operating characteristic 
curve (AUROC) of 0.917 ± 0.001 and 0.918 ± 0.007. 
DeepPurpose (Morgan + MLP) is the worst performing 
method with an AUROC of 0.880 ± 0.006. Notably, the gap 

between best and worst performers is small (0.038) on the 
total scale of 0 to 1, and all methods display high AUROC 
values. The amount of data is low with 1212 data points.

Caco2

In the case of the human colon epithelial cancer cell 
line permeability data (Caco2), the clear winner is 
DeepAutoQSAR with a low MAE of 0.306 ± 0.012 log units 
(the data is log[cm/s]), followed by ChemProp with 0.390 
± 0.045 log units. The worst performing approach by a  
margin of ~0.6 log units is the DeepPurpose (Morgan + 
MLP) approach, compared to the absolute data spread of 
-7.76 to -3.51 log units for the endpoint. The amount of 
data in the set is rather low with only 906 data points. 

Note that the description in the TDC publication is in error 
here (units are described as cm/s instead of log[cm/s]). 
Refer to the distributed data and the original data source14 
for further information.

Lipo

For the Lipophilicity (Lipo) dataset, ChemProp emerges 
as the winner with an MAE of 0.437 ± 0.010 log units, 
followed by DeepAutoQSAR with an MAE of 0.476 ± 0.015 
log units (the data is the log of the distribution ratio). The 
worst performer in this case is the DeepPurpose (CNN) 
approach. The overall performance spread of the methods 
is below 0.3 log units, which can be considered low 
compared to the overall data spread (-1.5 to 4.5 log units). 
With 4200 data points in the set, it is medium-sized w.r.t. 
the other investigated endpoints.
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AqSol

DeepAutoQSAR is the best performing method on the 
aqueous solubility (AqSol) dataset, with an MAE of 0.784 
± 0.023 log units (the endpoint is given in log[mol/L]). It is 
followed by ChemProp and DeepPurpose (RDKit2D + MLP) 
which perform similarly for the dataset, with ChemProp 
being slightly superior. The worst performing method 
on the dataset is DeepPurpose (Morgan + MLP) with an 
MAE of 1.203 ± 0.019 log units. This brings the overall 
performance spread to ~0.4 log units, compared to the 
overall data spread of (-13.17 to 2.14). The AqSol dataset is 
among the larger ones, with 9982 data points.

Distribution Endpoints

Table 5 summarizes the results of the endpoints 
associated with distribution, comprising the BBB, PPBR 
and VDss datasets.

BBB

In the case of the blood-brain barrier penetration data 
(BBB), ChemProp, DeepAutoQSAR and DeepPurpose 
(RDKit2D + MLP) share first place with areas under 
the receiver operating characteristic curve (AUROC) of  
0.882 ± .012, 0.876 ± 0.011 and 0.889 ± 0.016. The worst 
performing method here is DeepPurpose (CNN) with an 
AUROC of 0.781 ± 0.030. All methods perform at a high 
level with a gap of ~ 0.1 between the best and worst 
performing methods (on a scale of 0 to 1). The dataset 
contains a rather small amount of 1975 drugs. 

PPBR

In the case of the human plasma protein binding rate 
(PPBR) dataset, ChemProp and DeepAutoQSAR are tied 
for the best performing method with MAEs of 7.993 ± 
0.234 and 8.043 ± 0.107 percentage points. DeepPurpose 
(Morgan + MLP) comes in last with an MAE of 12.848 ± 
0.362 percentage points.  The overall performance spread 
is ~ 4 percentage points. The amount of data in the set is 
on the lower end, with 1797 data points.

VDss

The volume distribution at steady state dataset (VDss) 
is dominated by DeepAutoQSAR, with a Spearman 
correlation coefficient of 0.673 ± 0.009. Second best 
method is DeepPurpose (RDKir2D + MLP) with a coefficient 
of 0.561 ± 0.025. DeepPurpose (CNN) is ranked last with a 
coefficient of 0.226 ± 0.114. The spread in the results is a 
significant 0.45 on a scale of 0 to 1. The data set contains 
1130 drugs which makes it one of the smaller sets.

Metabolism Endpoints

Table 6 summarizes the results of the endpoints 
associated with metabolism, comprising the CYP2C9 
Inhibition/Substrate, CYP2D6 Inhibition/Substrate and 
CYP3A4 Inhibition/Substrate datasets.

CYP2C9 Inhibition

For the cytochrome P450 enzyme CYP2C9 inhibition 
data, DeepAutoQSAR performed best with an area under 
the precision-recall curve (AUPRC) of 0.792 ± 0.007. The 
second best method here is ChemProp with an AUPRC of 
0.770 ± .005. DeepPurpose (CNN) performs worst with an 
AUPRC of 0.713 ± 0.006. The spread between the results is 
a low 0.08 on a total scale of 0 to 1. The dataset is one of 
the largest with 12092 data points.

CYP2D6 Inhibition

The best performing method on the cytochrome P450 
enzyme CYP2D6 inhibition data is DeepAutoQSAR, with 
an area under the precision-recall curve (AUPRC) of 0.702 
± 0.006. ChemProp takes second place with an AUPRC of 
0.664 ± 0.012. Worst performing method for the dataset is 
DeepPurpose (CNN) with an AUPRC of 0.544 ± 0.053. The 
spread between the methods is ~ 0.15, on a total scale of 
0 to 1. With 13130 data points, this is the largest dataset 
investigated. 

 
 

Model (Metric) BBB (AUROC, ↑) PPBR (MAE, ↓) VDss (Spearman, ↑)

DeepAutoQSAR 0.876 ± .011 8.043 ± .107 0.673 ± .009

RDKit2D + MLP 0.889 ± .016 9.994 ± .319 0.561 ± .025

Morgan + MLP 0.823 ± .015 12.848 ± .362 0.493 ± .011

CNN 0.781 ± .030 11.106 ± .358 0.226 ± .114

ChemProp 0.882 ± .012 7.993 ± .234 0.519 ± .033

Table 5: Performance results on distribution datasets for DeepAutoQSAR, ChemProp, and DeepPurpose models. Each entry details mean performance and 
standard deviation across 5 trials. 
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Model (Metric) CYP2C9 Inh. (AUPRC, ↑) CYP2D6 Inh. (AUPRC, ↑) CYP3A4 Inh. (AUPRC, ↑)

DeepAutoQSAR 0.792 ± .007 0.702 ± .006 0.883 ± .003

RDKit2D + MLP 0.742 ± .006 0.616 ± .007 0.829 ± .007

Morgan + MLP 0.715 ± .004 0.587 ± .011 0.827 ± .009

CNN 0.713 ± .006 0.544 ± .053 0.821 ± .003

ChemProp 0.770 ± .005 0.664 ± .012 0.870 ± .003

Model (Metric) CYP2C9 Sub. (AUPRC, ↑) CYP2D6 Sub. (AUPRC, ↑) CYP3A4 Sub. (AUROC, ↑)

DeepAutoQSAR 0.395 ± .034 0.703 ± .008 0.642 ± .019

RDKit2D + MLP 0.360 ± .040 0.677 ± .047 0.639 ± .012

Morgan + MLP 0.380 ± .015 0.671 ± .066 0.633 ± .013

CNN 0.367 ± .059 0.485 ± .037 0.662 ± .031

ChemProp 0.391 ± .033 0.688 ± .024 0.610 ± .029

CYP3A4 Inhibition

With an area under the precision-recall curve (AUPRC) 
of 0.883 ± 0.003, DeepAutoQSAR performs best on the 
cytochrome P450 enzyme CYP3A4 inhibition data set. 
ChemProp is a close second with an AUPRC of 0.870 
± 0.003. DeepPurpose (CNN) is the worst performing 
method, however, all methods perform within a very small 
window of 0.06 (on a scale of 0 to 1). The dataset is one of 
the largest investigated with 12328 data points.

CYP2C9 Substrate

For the cytochrome P450 enzyme CYP2C9 substrate data, 
most methods perform similarly with  AUPRCs around 
0.380. Only DeepPurpose (RDKit2D + MLP) performs 
slightly worse with an AUPRC of 0.360 ± 0.040. Notably, 
none of the methods perform very well here (on a scale 
of 0 to 1), and lie very close together. The dataset size is 
small with only 666 data points.

 
 
 
 
 

CYP2D6 Substrate 

In the case of the cytochrome P450 enzyme CYP2D6 
substrate data, DeepAutoQSAR takes first place with 
an area under the precision-recall curve (AUPRC) of 
0.703 ± 0.008. ChemProp, DeepPurpose (Morgan + LP) 
and DeepPurpose (RDKit2D + MLP) are tied for a close 
second place with AUPRCs of 0.688 ± 0.024, 0.671 ± 0.066 
and 0.677 ± 0.047, respectively. DeepPurpose (CNN) is 
performing significantly worse compared to the other 
methods with an AUPRC of only 0.485 ± 0.037. The spread 
of the results is ~ 0.22 on a scale of 0 to 1. Notably the 
top 4 out of 5 methods are only separated by 0.034. The 
dataset is rather small with only 664 data points.

CYP3A4 Substrate

None of the tested methods clearly outperforms the 
others on the cytochrome P450 enzyme CYP2D6 substrate 
data set; DeepAutoQSAR and all DeepPurpose methods 
are within each others’ error estimates around an areas 
under the receiver operating characteristic curve (AUROC) 
of ~0.65. The exception to this is ChemProp, which 
performs slightly worse with an AUROC of 0.610 ± 0.029. 
The spread between the methods is ~0.05 on a scale of 0 
to 1. With only 667 data points, the dataset is small.

Table 6: Performance results on metabolism datasets for DeepAutoQSAR, ChemProp, and DeepPurpose models. Each entry details mean performance and 
standard deviation across 5 trials. 
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Model (Metric) Half Life (Spearman, ↑) CL-Hepa (Spearman, ↑) CL-Micro (Spearman, ↑)

DeepAutoQSAR 0.551 ± .039 0.432 ± .025 0.594 ± .027

RDKit2D + MLP 0.184 ± .111 0.184 ± .111 0.586 ± .014

Morgan + MLP 0.329 ± .083 0.272 ± .068 0.492 ± .020

CNN 0.038 ± .138 0.235 ± .021 0.252 ± .116

ChemProp 0.293 ± .020 0.423 ± .040 0.579 ± .019

Model (Metric) LD50 (MAE, ↓) hERG (AUROC, ↑) Ames (AUROC, ↑) DILI (AUROC, ↑)

DeepAutoQSAR 0.59 ± .026 0.845 ± .016 0.864 ± .002 0.933 ± .006

RDKit2D + MLP 0.678 ± .003 0.841 ± .020 0.823 ± .011 0.875 ± .019

Morgan + MLP 0.649 ± .019 0.736 ± .023 0.794 ± .008 0.832 ± .021

CNN 0.675 ± .011 0.754 ± .037 0.776 ± .015 0.792 ± .016

ChemProp 0.548 ± .008 0.750 ± .019 0.864 ± .005 0.918 ± .008

Excretion Endpoints

Table 7 summarizes the results of the endpoints 
associated with excretion, comprising the Half Life, CL-
Hepa and CL-Micro datasets.

Half Life

DeepAutoQSAR is the best performing method for the 
half life dataset, with a Spearman coefficient of 0.551 ± 
0.039. DeepPurpose (Morgan + MLP) ranks second with 
a coefficient of 0.329 ± 0.083. DeepPurpose (CNN) ranks 
last, with a coefficient of 0.038 ± 0.138. Notably, the 
performance spread between the methods is half of the 
possible values (0.038 to 0.551 on a scale of 0 to 1). The 
amount of data available in this set is low at 667 data 
points.

CL-Hepa

For hepatocyte clearance data (CL-Hepa), DeepAutoQSAR 
and ChemProp are tied for the best performance, with 
Spearman correlation coefficients of 0.435 ± 0.003 and 
0.423 ± 0.040. The worst performing approach here 
is DeepPurpose (RDKit2D + MLP) with a correlation 
coefficient of 0.184 ± 0.111. The performance spread 
between methods is a rather large ~0.25 on a total scale 
of 0 to 1. Dataset size is on the lower end with 1020 data 
points.

CL-Micro

In the case of the microsomal clearance dataset (CL-
Micro), three methods are tied for the first place: 
ChemProp, DeepAutoQSAR and DeepPurpose (RDKit2D 

+ MLP) with Spearman correlation coefficients of 0.579 ± 
0.019, 0.594 ± 0.027 and 0.586 ± 0.014, respectively. The 
worst performing method is DeepPurpose (CNN) with 
a coefficient of 0.252 ± 0.116. Notably, this method is 
significantly less performant than the four others in this 
case, with a gap of ~0.35 to the best performing methods, 
and ~ 0.25 to the next best performing method (on a total 
scale of 0 to 1). With 1102 data points, the data set is one 
of the smaller sets.

Toxicity Endpoints

Table 8 summarizes the results of the endpoints 
associated with toxicity, comprising the LD50, hERG, Ames 
and DILI datasets.

LD50

ChemProp is the best performing method for the median 
lethal dose (LD50) dataset, with an MAE of 0.548 ± 0.008 
log units (the endpoint is given in log[1/(mol/kg)]). The 
second best performing method is DeepAutoQSAR with 
an MAE of 0.59 ± 0.026 log units, while DeepPurpose 
(RDKit2D + MLP) exhibits the worst performance of all 
tested methods. Notably, all DeepPurpose based methods 
are rather close in this case, differing by only ~0.03 log 
units. Overall, the tested approaches are rather close for 
this dataset, with a spread of only ~0.1 log unit, compared 
to an overall spread of the dataset of (-0.34 to 10.20). With 
7385 data points, the set can be considered medium sized 
w.r.t. the others.

 
 

Table 7: Performance results on excretion datasets for DeepAutoQSAR, ChemProp, and DeepPurpose models. Each entry details mean performance and 
standard deviation across 5 trials. 

Table 8: Performance results on toxicity datasets for DeepAutoQSAR, ChemProp, and DeepPurpose models. Each entry details mean performance and 
standard deviation across 5 trials. 
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hERG

DeepAutoQSAR and DeepPurpose (RDKit2D + MLP) are tied 
in performance on the human Ether-à-go-go-Related gene 
ion channel (hERG) inhibition data, with areas under the 
receiver operating characteristic curve (AUROC) of 0.845 ± 
0.016 and 0.841 ± 0.020. The worst performing method in 
this case is DeepPurpose (Morgan + MLP) with an AUROC 
of 0.736 ± 0.023. The spread in the performance across 
methods is ~ 0.1, on a total scale of 0 to 1. Dataset size is 
on the lower end with 648 drugs. 

Ames

With areas under the receiver operating characteristic 
curve (AUROC) of 0.864 ± 0.002 and 0.864 ± .005, 
DeepAutoQSAR and ChemProp are the best performing 
methods on the Ames mutation assay data. DeepPurpose 
(CNN) performs worst with an AUROC of 0.794 ± 0.008. 
Nevertheless, the performance window over all the 
methods is only 0.07, and all methods perform on a high 
level (the total scale is 0 to 1). With 7255 data points, the 
dataset is medium sized when compared to the other 
datasets in this study.

DILI

The best performing method on the drug induced liver 
injury dataset is DeepAutoQSAR with an area under the 
receiver operating characteristic curve (AUROC) of 0.933 
± 0.006. ChemProp performs second with an excellent 
AUROC of 0.918 ± 0.008. The worst performing approach 
on the DILI data is DeepPurpose (CNN) with an AUROC 
of 0.792 ± 0.016. The overall spread in the performance 
between methods is ~ 0.2, on a total scale of 0 to 1. The 
dataset is the smallest among the investigated sets with 
only 475 drugs.

Aggregate Results

For a global view of relative performance across ML 
models, Figure 2 shows the distribution of ranking positions 
for each of the five models across all TDC endpoints. The 
plot gives the lower and upper (first and third) quartiles 
of the data distribution as the edges of the bounding 
boxes, with whiskers showing the lower and upper fences 
of the distributions. Outliers are also plotted as points. 
The rankings show DeepAutoQSAR performs the best on 
average, followed by ChemProp, DeepPurpose RDKit2D + 
MLP, DeepPurpose Morgan + MLP, and then DeepPurpose 
CNN. All methods except for DeepPurpose Morgan + MLP 
rank first in at least one task, and all methods except 
DeepAutoQSAR rank last in at least one task.
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Figure 2: The boxplots above show the distributions of rankings for each method across the 18 ADME and 4 Tox TDC datasets. DeepAutoQSAR ranks first most 
often, followed by ChemProp and DeepPurpose methods. 

To highlight the relative performances of ChemProp and 
DeepAutoQSAR across all of the TDC tasks, we provide 
comparison plots in Figure 3. These plots show direct 
comparisons between the methods on a per-metric basis; 
clockwise from top-left, we show performance by mean 
absolute error (MAE), Spearman correlation coefficient, 
area under the precision-recall curve (AUPRC), and area 
under the receiver-operator characteristic curve (AUROC). 
Individual datasets from the benchmark are color-coded 

corresponding to the associated ADMET classification, 
as is denoted in the above tables. Uncertainty via score 
standard deviation is also denoted via whiskers in the 
correlation plots. Note that subplots differ in scales 
and units. We provide additional comparison plots 
between ChemProp and DeepPurpose methods in the 
supplementary material.
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Figure 3: Scatter plots show relative performance of DeepAutoQSAR and ChemProp on all endpoints with associated uncertainties. Top left shows 
performance on tasks measured by MAE where lower is better. Top right and bottom row plots show performance measured by Spearman Correlation, 
AUPRC, and AUROC where higher is better. Colors indicate the ADME/Tox designations of the datasets.
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Conclusions
As the utilization rate and subsequent popularity of 
machine learning approaches in small molecule discovery 
rises, it is increasingly important to maintain an informed 
understanding of different approaches’ accuracy and 
stability in predicting relevant molecular properties. To 
this end, ADME and toxicity assay prediction remains a 
fundamental challenge for adopting machine learning 
in drug discovery and development, and ML model 
performance on these tasks is a core factor in determining 
the technology’s successful application. Therefore, 
we provide benchmarking figures to demonstrate the 
relative performance of multiple state-of-the-art methods 
for molecular property prediction on ADME/Tox tasks, 
showing how existing tools may faithfully model chemical 
data. We also illustrate the strengths of Schrödinger’s 
offering DeepAutoQSAR by highlighting its improved 
modeling performance over the open source ML/AI tools 
ChemProp and DeepPurpose. 

Considering these benchmark results, we aim to 
continually develop DeepAutoQSAR to further improve 
overall accuracy, generalization to new chemistry, and 
label efficiency to adapt to the demands of ML in real 
world drug discovery. We offer these results to the 
growing field of machine learning on molecules as a 
whole, as recognizing the abilities of existing methods 
can enable easier comparison for others to use in their 
development of ML tools. Ultimately, we hope that our 
work as a machine learning community will enable the 
discovery and deployment of new therapeutics through 
faster and more cost effective means with tangible benefit 
to patients.    

 

Supplemental Materials
DeepAutoQSAR Model Hyper-parameters  
and References:

Table 9 contains a list of ML model architectures and 
associated hyper-parameters explored for model selection 
during DeepAutoQSAR model training. The models are a 
mix of classical ML models operating on vectorial data, like 
Random Forests and XGBoost, and more specialized graph 
convoluted models focused on representation learning for 
graph structured data. For each model, we provide a list of 
free hyper-parameters which we optimize using Bayesian 
Optimization; these parameters take float, integer, and 
boolean values, all of which are cast to continuous latent 
variables for BO with Gaussian Process Regressors. 

We also give a reference link (or several links) for each 
model architecture. These links either directly describe 
the methods implemented in DeepAutoQSAR (eg. 
XGBoost, GIN), or contain information which was used 
indirectly for the construction of custom methods (eg. 
TorchGraphConv). In terms of implementation library, 
Random Forest models use sklearn’s implementation15, 
XGBoost comes from the XGBoost library 16, and all other 
models are implemented in PyTorch. The GNN’s are all 
implemented with PyTorch Geometric 17. For the full 
DeepAutoQSAR model search, we also perform BO over 
other components (data transformations, additional 
molecular features), but we omit those details.
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Table 9: Architectural specifications for ML models eligible for inclusion in DeepAutoQSAR’s predictive ensemble. We provide the name of the model 
architecture, the range of possible hyper-parameters searched over, and a link to literature describing each model. 

ML Model Model Hyper-parameters Architecture Reference

Dense Neural Network # hidden layers: 1-3 
Hidden size 1: 64-1000 
Hidden size 2: 64-256 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Epochs: 50-150 
ECFP size: 500-2060 
ECFP radius: 2-4

N/A

Random Forest Regressor # estimators: 10-200 
ECFP size: 500-1050 
ECFP radius: 2-4

18

XGBoost # estimators: 10-200 
ECFP size: 500-1050 
ECFP radius: 2-4

19

TorchGraphConv # Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dense layer size: 128-256 
Epochs: 50-150

20

GCN #Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Dense layer size: 128-256 
Epochs: 50-150 
Jumping Knowledge: T/F

21

GraphSAGE #Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Dense layer size: 128-256 
Epochs: 50-150 
Jumping Knowledge: T/F

22

GIN #Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Dense layer size: 128-256 
Epochs: 50-150 
Jumping Knowledge: T/F 
Train GIN eps: T/F

23

TopK #Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Dense layer size: 128-256 
Epochs: 50-150 
Jumping Knowledge: T/F 
TopK ratio: 0.1-0.6

24
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SAGPool #Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Dense layer size: 128-256 
Epochs: 50-150 
Jumping Knowledge: T/F 
SAGPool ratio: 0.1-0.6

25

EdgePool #Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Dense layer size: 128-256 
Epochs: 50-150 
Jumping Knowledge: T/F

26

GlobalAttention #Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Dense layer size: 128-256 
Epochs: 50-150 
Jumping Knowledge: T/F

23

Set2Set #Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Dense layer size: 128-256 
Epochs: 50-150 
Jumping Knowledge: T/F

27

SortPool #Conv layers: 2-3 
Hidden size 1: 64-256 
Hidden size 2: 64-128 
Hidden size 3: 32-64 
Dropout: 0.0-0.5 
Dense layer size: 128-256 
Epochs: 50-150 
Jumping Knowledge: T/F 
Nodes held: 3-10

28
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Figure 4: Comparison of per-dataset performance between DeepAutoQSAR and DeepPurpose Kit2D + MLP. See associated chart in main text for plot details. 
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Figure 5: Comparison of per-dataset performance between DeepAutoQSAR and DeepPurpose CNN See associated chart in main text for plot details. 
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Figure 6: Comparison of per-dataset performance between DeepAutoQSAR and DeepPurpose Morgan + MLP. See associated chart in main text 
for plot details. 
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