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Executive Summary
• This benchmark evaluates the performance of 

DeepAutoQSAR on two datasets of different sizes 
using different hardware configurations and model 
training times. 

• Our general recommendations, based on the results 
and the hardware costs, are to use the NVIDIA T4 GPU 
hardware with the following training times: 2 hrs for 
datasets with less than 1,000 data points; 4 hrs for 
1,000 to 10,000 data points; and 8 hrs for more than 
10,000 data points. 

• While performance ultimately depends on the data, 
the intended purpose of this benchmark is to serve 
as a starting point for choosing the hardware to 
train the ML model(s) with and the specific model 
training time to use. Actual performance is highly 
dependent on the specific dataset and may require 
increasing the training time or choosing a different 
GPU to achieve the desired results.
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Introduction
The application of machine learning (ML) to predict 
the molecular properties of drug candidates 
is an important area of research that has the 
potential to reduce drug development timelines 
and accelerate the creation of medicines for 
patients with serious unmet medical needs.

The successful application of ML relies on sufficient data 
quantity and quality, a suitable model architecture(s) 
for the given problem, proper hyperparameter 
choices (the parameters for a particular ML model 
architecture), and appropriate model training 
time for a chosen hardware configuration. 

DeepAutoQSAR is a machine learning product that 
allows users to predict molecular properties based on 
chemical structure. The automated supervised learning 
pipeline enables both novice and experienced users to 
create and deploy best-in-class quantitative structure 
activity/property relationship (QSAR/QSPR) models.

The purpose of this benchmark, which builds on the 
work of an earlier whitepaper1, is to characterize the 
performance of DeepAutoQSAR on two datasets of 
different sizes using different hardware configurations 
and model training times. While performance 
ultimately depends on the data, the intended purpose 
of this benchmark is to serve as a starting point for 
choosing the hardware to train the ML model(s) 
with and the specific model training time to use.
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Datasets
The datasets used in the benchmark were obtained 
from the Therapeutics Data Commons (TDC). TDC 
provides ML-ready datasets that can be used for 
learning tasks that are valuable to pharmaceutical 
research and development and that cover different 
therapeutic modalities and stages of the drug 
development lifecycle2.

We use two datasets which contain assay data for one 
Absorption, Distribution, Metabolism, and Excretion 
(ADME) property each: 

1. Caco2 (Human Epithelial Cell Effective Permeability)

2. AqSolDB (Aqueous Solubility)

Performance is measured by the median accuracy of 
the ADME property prediction for a sample of train-test 
data splits; note that the specific train-test data splits 
used are different from the splits provided by TDC for its 
benchmark leaderboard.

Dataset Descriptions

Caco2 (Human Epithelial Cell Effective Permeability)3*

The human colon epithelial cancer cell line, Caco-2, 
is used as an in vitro model to simulate the human 
intestinal tissue. The experimental result on the 
rate of drug passing through the Caco-2 cells can 
approximate the rate at which the drug permeates 
through the human intestinal tissue.

This dataset contains numeric, non-integer data for 
use in regression, and there are 906 compounds.

AqSolDB (Aqueous Solubility)4*

Aqueous solubility measures a drug’s ability to 
dissolve in water. Poor water solubility could lead to 
slow drug absorptions, inadequate bioavailability and 
even induce toxicity. More than 40% of new chemical 
entities are not soluble 

This dataset contains numeric, non-integer data for 
use in regression, and there are 9845 compounds.

*Note: The datasets have been modified from their original form 
to remove structural redundancies and experimental errors.
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Hardware
The hardware used in the benchmark was provisioned 
from the Google Cloud Platform (GCP); therefore, 
the hardware configurations chosen were based 
on the machine types offered by Google.

These limitations on hardware configurations, dictated 
by the cloud provider, mean that only specific hardware 
pairings are available, such as a particular GPU platform that 

can only be used with a given CPU platform. For example, 
NVIDIA A100 GPUs can only be run on an A2 machine 
type, which only uses the Intel Cascade Lake CPU platform. 
Constrained by these limitations, every effort was made to 
keep hardware-specific options consistent across machine 
types, to provide hardware diversity when reasonable, and 
to use cost effective high-performance computing hardware.

Hardware 
Key

GCP Machine  
Type

CPU  
Platform

vCPUs* RAM (GB)
GPU 
Platform

GPUs Cost ($) per Hour+

2 vCPUs n2-standard-2

Intel Ice Lake

2 8

N/A None

$0.10

4 vCPUs n2-standard-4 4 16 $0.19

8 vCPUs n2-standard-8 8 32 $0.39

16 vCPUs n2-standard-16 16 64 $0.78

T4 GPU
n1-standard-4 Intel Ice Lake** 4 15

NVIDIA T4

1

$0.54

V100 GPU NVIDIA V100 $2.67

A100 GPU a2-highgpu-1g Intel Cascade Lake 12 85 NVIDIA A100 $3.67

Table 1. Hardware configuration details 

* For these machine types, GCP defines vCPUs as the number of threads. 2 vCPU (threads) per core.
** Up to Intel Ice Lake generation; GCP auto assigns CPU platform on node pool creation.
+ Prices in November, 2022. includes sustained use discounts.

Figure 1: Grouped R2 score by hardware configurations on the AqSolDB 
regression dataset

AqSolDB Solubility:  
R2 Performance Across Machine Types

Figure 2: Grouped R2 score by hardware configurations on the Caco2 
permeability regression dataset

Caco2 Permeability:  
R2 Performance Across Machine Types
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Benchmarking Methods & Results
Our benchmark is a two stage process. In the first 
stage, DeepAutoQSAR models are trained to fit the TDC 
datasets using a standard cross validation procedure 
to select top performing ML models for the model 
ensemble and to optimize hyperparameters; the end 
result of this stage is an ensemble of top performing 
models, which, under normal usage, are averaged to 
provide a mean prediction and associated ensemble 
standard deviation. We detail the specific protocol in 
our white paper, a Benchmark Study of DeepAutoQSAR, 
ChemProp, and DeepPurpose on the ADMET Subset of 
the Therapeutic Data Commons.1 In the second stage, 
random train-test splits of the data are computed, 
and the previously determined ensemble of top ML 
models architectures with specific hyperparameter 
configurations are trained on the new training data splits. 
Predictions are then generated for the new test data 
splits. These multi-split metrics provide a more robust 
estimate of model performance by reducing potential 
bias introduced from a single train-test data split. Model 
performance in this hardware benchmark is reported as 
the median R2 coefficient of determination5 across these 
random train-test splits for each hardware configuration 
and model training time.

In the first stage, the initial training procedure runs 
continuously for each training time allotment. Due to the 
stochastic nature of hyperparameter optimization and 
model architecture selection, each hardware and training 
time combination can potentially explore a different 
number of model architectures and hyperparameter 
combinations each time a benchmark job is run. The 
model training times evaluated were: 0.5, 1, 2, 4, 8, and 
16 hours. As a general rule, more competent hardware 
running for longer training times on smaller datasets 
(e.g., a machine with an A100 GPU training for 16 hrs 
on the smaller Caco2 permeability dataset) will explore 
more hyperparameterizations than less competent 
hardware running for shorter training times on larger 
datasets (e.g., a two core machine training for 2 hrs on 
the larger AqSolDB dataset). 

Since model architecture selection and hyperparameter 
sampling is a stochastic process, we run each benchmark 
configuration, which is the particular hardware and 
training time combination, three times and report 
averages for performance — this is especially relevant 
when fewer hyperparameter combinations are 
explored as model performance is more sensitive to 
hyperparameter sampling. The output of the first stage 
is an ensemble of top models, determined by cross 
validation, with specific hyperparameters choices for each.

The second stage of our benchmark runs for half the 
training time of the first stage. Increasing training 
time leads to more robust statistics as the median 
performance converges to a split-independent value, 

but comes at the expense of increased computational 
cost; in practice computational expense must be 
balanced with the need to train the ensemble model 
for a sufficiently large training time. For performance 
reporting we provide the median R2 coefficient of 
determination5 as computed from the multiple 
train-test splits, which aims to reduce potential bias 
introduced by a single train-test split. To compute 
this R2, we repeatedly split the data into training and 
testing sets via bootstrap sampling with replacement; 
to do so, we take N samples with replacement from 
the dataset with N total data points and remove any 
duplicates to form a subset. The selected points are 
then used to train the specific model architectures 
found in stage one, and the unselected points serve 
as the test holdout. We do this until the time limit is 
reached and report the median R2 of all resamplings. 

As both of the TDC datasets are numerical regression 
problems, this metric is a reasonable measure of model 
performance; however, the choice of performance 
metric in real-world applications should always be 
determined according to the use-case of the ensemble 
model. Sometimes MAE or RMSE are more appropriate 
to assess if a model is sufficiently performant. The output 
of the second stage is a distribution of ensemble model 
performances over different train-test splits; the reported 
value is the median of the distribution.

We plot the benchmark results, which is the median 
R2 coefficient of determination from the second stage, 
below. Our first plot shows performance on the AqSolDB 
dataset, and the second plot shows performance on the 
Caco2 permeability dataset. For each of these datasets, 
we highlight the progression of performance over time 
grouped by hardware type, where hardware type is on the 
x-axis, training time in hours is the bar color, and median 
R2 score is on the y-axis. The data used to generate the 
plots are provided in the supplementary tables.

Number of  
Data Points

Hardware
Training  
Time (hr)

<1,000

NVIDIA T4 GPU

2

1,000 – 10,000 4

>10,000 8

Table 2. Hardware and training time recommendations based on the 
number of data points

Conclusion

These recommendations are a starting point and a lower 
bound. Actual performance is highly dependent on the specific 
dataset, and you may need to increase the training time or 
choose a different GPU to achieve your desired results.
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Supplemental Material

Data Set Training Time (hr) Hardware Mean Bootstrapped R2

Caco2 Permeability 0.5 2 vCPUs 0.6744

4 vCPUs 0.6677

8 vCPUs 0.6669

16 vCPUs 0.6707

T4 GPU 0.6727

V100 GPU 0.6898

A100 GPU 0.6869

1 2 vCPUs 0.6616

4 vCPUs 0.6794

8 vCPUs 0.6860

16 vCPUs 0.6761

T4 GPU 0.6741

V100 GPU 0.6985

A100 GPU 0.6905

2 2 vCPUs 0.6860

4 vCPUs 0.7030

8 vCPUs 0.6857

16 vCPUs 0.6880

T4 GPU 0.7163

V100 GPU 0.7178

A100 GPU 0.7137

4 2 vCPUs 0.6978

4 vCPUs 0.6960

8 vCPUs 0.7037

16 vCPUs 0.7005

T4 GPU 0.7213

V100 GPU 0.7193

A100 GPU 0.7150

8 2 vCPUs 0.7100

4 vCPUs 0.7254

8 vCPUs 0.7081

16 vCPUs 0.7090

T4 GPU 0.7144

V100 GPU 0.7011

A100 GPU 0.7140

16 2 vCPUs 0.6960

4 vCPUs 0.7168

8 vCPUs 0.7210

16 vCPUs 0.7163

T4 GPU 0.7186

V100 GPU 0.7088

A100 GPU 0.7185

Table 3. Performance data for Caco2 permeability by training time (hr) and hardware configuration



7

Data Set Training Time (hr) Hardware Mean Bootstrapped R2

AqSolDB Solubility 0.5 2 vCPUs 0.7187

4 vCPUs 0.7228

8 vCPUs 0.7513

16 vCPUs 0.7493

T4 GPU 0.7382

V100 GPU 0.7247

A100 GPU 0.7235

1 2 vCPUs 0.7303

4 vCPUs 0.7163

8 vCPUs 0.7400

16 vCPUs 0.7447

T4 GPU 0.7078

V100 GPU 0.7411

A100 GPU 0.7295

2 2 vCPUs 0.7369

4 vCPUs 0.7116

8 vCPUs 0.7311

16 vCPUs 0.7436

T4 GPU 0.7608

V100 GPU 0.7489

A100 GPU 0.7538

4 2 vCPUs 0.7328

4 vCPUs 0.7459

8 vCPUs 0.7403

16 vCPUs 0.7611

T4 GPU 0.7824

V100 GPU 0.7642

A100 GPU 0.7744

8 2 vCPUs 0.7703

4 vCPUs 0.7710

8 vCPUs 0.7542

16 vCPUs 0.7588

T4 GPU 0.7830

V100 GPU 0.7840

A100 GPU 0.7850

16 2 vCPUs 0.7769

4 vCPUs 0.7871

8 vCPUs 0.7867

16 vCPUs 0.7504

T4 GPU 0.7959

V100 GPU 0.8006

A100 GPU 0.8054

Table 4. Performance data for AqSolDB solubility by training time (hr) and hardware configuration
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