
WHITE PAPER

DeepAutoQSAR
Hardware Benchmark

Executive Summary
• This benchmark evaluates the performance of

DeepAutoQSAR on two datasets of different sizes
using different hardware configurations and model
training times.

• Our general recommendations, based on the results
and the hardware costs, are to use the NVIDIA T4 GPU
hardware with the following training times: 2 hrs for
datasets with less than 1,000 data points; 4 hrs for
1,000 to 10,000 data points; and 8 hrs for more than
10,000 data points.

• While performance ultimately depends on the data,
the intended purpose of this benchmark is to serve
as a starting point for choosing the hardware to
train the ML model(s) with and the specific model
training time to use. Actual performance is highly
dependent on the specific dataset and may require
increasing the training time or choosing a different
GPU to achieve the desired results.

2

Introduction
The application of machine learning (ML) to predict
the molecular properties of drug candidates
is an important area of research that has the
potential to reduce drug development timelines
and accelerate the creation of medicines for
patients with serious unmet medical needs.

The successful application of ML relies on sufficient data
quantity and quality, a suitable model architecture(s)
for the given problem, proper hyperparameter
choices (the parameters for a particular ML model
architecture), and appropriate model training
time for a chosen hardware configuration.

DeepAutoQSAR is a machine learning product that
allows users to predict molecular properties based on
chemical structure. The automated supervised learning
pipeline enables both novice and experienced users to
create and deploy best-in-class quantitative structure
activity/property relationship (QSAR/QSPR) models.

The purpose of this benchmark, which builds on the
work of an earlier whitepaper1, is to characterize the
performance of DeepAutoQSAR on two datasets of
different sizes using different hardware configurations
and model training times. While performance
ultimately depends on the data, the intended purpose
of this benchmark is to serve as a starting point for
choosing the hardware to train the ML model(s)
with and the specific model training time to use.

3

Datasets
The datasets used in the benchmark were obtained
from the Therapeutics Data Commons (TDC). TDC
provides ML-ready datasets that can be used for
learning tasks that are valuable to pharmaceutical
research and development and that cover different
therapeutic modalities and stages of the drug
development lifecycle2.

We use two datasets which contain assay data for one
Absorption, Distribution, Metabolism, and Excretion
(ADME) property each:

1. Caco2 (Human Epithelial Cell Effective Permeability)

2. AqSolDB (Aqueous Solubility)

Performance is measured by the median accuracy of
the ADME property prediction for a sample of train-test
data splits; note that the specific train-test data splits
used are different from the splits provided by TDC for its
benchmark leaderboard.

Dataset Descriptions

Caco2 (Human Epithelial Cell Effective Permeability)3*

The human colon epithelial cancer cell line, Caco-2,
is used as an in vitro model to simulate the human
intestinal tissue. The experimental result on the
rate of drug passing through the Caco-2 cells can
approximate the rate at which the drug permeates
through the human intestinal tissue.

This dataset contains numeric, non-integer data for
use in regression, and there are 906 compounds.

AqSolDB (Aqueous Solubility)4*

Aqueous solubility measures a drug’s ability to
dissolve in water. Poor water solubility could lead to
slow drug absorptions, inadequate bioavailability and
even induce toxicity. More than 40% of new chemical
entities are not soluble

This dataset contains numeric, non-integer data for
use in regression, and there are 9845 compounds.

*Note: The datasets have been modified from their original form
to remove structural redundancies and experimental errors.

4

Hardware
The hardware used in the benchmark was provisioned
from the Google Cloud Platform (GCP); therefore,
the hardware configurations chosen were based
on the machine types offered by Google.

These limitations on hardware configurations, dictated
by the cloud provider, mean that only specific hardware
pairings are available, such as a particular GPU platform that

can only be used with a given CPU platform. For example,
NVIDIA A100 GPUs can only be run on an A2 machine
type, which only uses the Intel Cascade Lake CPU platform.
Constrained by these limitations, every effort was made to
keep hardware-specific options consistent across machine
types, to provide hardware diversity when reasonable, and
to use cost effective high-performance computing hardware.

Hardware
Key

GCP Machine
Type

CPU
Platform

vCPUs* RAM (GB)
GPU
Platform

GPUs Cost ($) per Hour+

2 vCPUs n2-standard-2

Intel Ice Lake

2 8

N/A None

$0.10

4 vCPUs n2-standard-4 4 16 $0.19

8 vCPUs n2-standard-8 8 32 $0.39

16 vCPUs n2-standard-16 16 64 $0.78

T4 GPU
n1-standard-4 Intel Ice Lake** 4 15

NVIDIA T4

1

$0.54

V100 GPU NVIDIA V100 $2.67

A100 GPU a2-highgpu-1g Intel Cascade Lake 12 85 NVIDIA A100 $3.67

Table 1. Hardware configuration details

* For these machine types, GCP defines vCPUs as the number of threads. 2 vCPU (threads) per core.
** Up to Intel Ice Lake generation; GCP auto assigns CPU platform on node pool creation.
+ Prices in November, 2022. includes sustained use discounts.

Figure 1: Grouped R2 score by hardware configurations on the AqSolDB
regression dataset

AqSolDB Solubility:
R2 Performance Across Machine Types

Figure 2: Grouped R2 score by hardware configurations on the Caco2
permeability regression dataset

Caco2 Permeability:
R2 Performance Across Machine Types

.84 .76

.8 .72

R
2 S

co
re

R2 S
co

re

.76

.82 .74

.78
.7

.74 .68

Machine Types Machine Types

2 vCPUs 2 vCPUs4 vCPUs 4 vCPUs8 vCPUs 8 vCPUs16 vCPUs 16 vCPUsT4 GPU T4 GPUV100 GPU V100 GPUA100 GPU A100 GPU

.72 .66

.7 .64

Training Time (Hours)
1684210.5

5

Benchmarking Methods & Results
Our benchmark is a two stage process. In the first
stage, DeepAutoQSAR models are trained to fit the TDC
datasets using a standard cross validation procedure
to select top performing ML models for the model
ensemble and to optimize hyperparameters; the end
result of this stage is an ensemble of top performing
models, which, under normal usage, are averaged to
provide a mean prediction and associated ensemble
standard deviation. We detail the specific protocol in
our white paper, a Benchmark Study of DeepAutoQSAR,
ChemProp, and DeepPurpose on the ADMET Subset of
the Therapeutic Data Commons.1 In the second stage,
random train-test splits of the data are computed,
and the previously determined ensemble of top ML
models architectures with specific hyperparameter
configurations are trained on the new training data splits.
Predictions are then generated for the new test data
splits. These multi-split metrics provide a more robust
estimate of model performance by reducing potential
bias introduced from a single train-test data split. Model
performance in this hardware benchmark is reported as
the median R2 coefficient of determination5 across these
random train-test splits for each hardware configuration
and model training time.

In the first stage, the initial training procedure runs
continuously for each training time allotment. Due to the
stochastic nature of hyperparameter optimization and
model architecture selection, each hardware and training
time combination can potentially explore a different
number of model architectures and hyperparameter
combinations each time a benchmark job is run. The
model training times evaluated were: 0.5, 1, 2, 4, 8, and
16 hours. As a general rule, more competent hardware
running for longer training times on smaller datasets
(e.g., a machine with an A100 GPU training for 16 hrs
on the smaller Caco2 permeability dataset) will explore
more hyperparameterizations than less competent
hardware running for shorter training times on larger
datasets (e.g., a two core machine training for 2 hrs on
the larger AqSolDB dataset).

Since model architecture selection and hyperparameter
sampling is a stochastic process, we run each benchmark
configuration, which is the particular hardware and
training time combination, three times and report
averages for performance — this is especially relevant
when fewer hyperparameter combinations are
explored as model performance is more sensitive to
hyperparameter sampling. The output of the first stage
is an ensemble of top models, determined by cross
validation, with specific hyperparameters choices for each.

The second stage of our benchmark runs for half the
training time of the first stage. Increasing training
time leads to more robust statistics as the median
performance converges to a split-independent value,

but comes at the expense of increased computational
cost; in practice computational expense must be
balanced with the need to train the ensemble model
for a sufficiently large training time. For performance
reporting we provide the median R2 coefficient of
determination5 as computed from the multiple
train-test splits, which aims to reduce potential bias
introduced by a single train-test split. To compute
this R2, we repeatedly split the data into training and
testing sets via bootstrap sampling with replacement;
to do so, we take N samples with replacement from
the dataset with N total data points and remove any
duplicates to form a subset. The selected points are
then used to train the specific model architectures
found in stage one, and the unselected points serve
as the test holdout. We do this until the time limit is
reached and report the median R2 of all resamplings.

As both of the TDC datasets are numerical regression
problems, this metric is a reasonable measure of model
performance; however, the choice of performance
metric in real-world applications should always be
determined according to the use-case of the ensemble
model. Sometimes MAE or RMSE are more appropriate
to assess if a model is sufficiently performant. The output
of the second stage is a distribution of ensemble model
performances over different train-test splits; the reported
value is the median of the distribution.

We plot the benchmark results, which is the median
R2 coefficient of determination from the second stage,
below. Our first plot shows performance on the AqSolDB
dataset, and the second plot shows performance on the
Caco2 permeability dataset. For each of these datasets,
we highlight the progression of performance over time
grouped by hardware type, where hardware type is on the
x-axis, training time in hours is the bar color, and median
R2 score is on the y-axis. The data used to generate the
plots are provided in the supplementary tables.

Number of
Data Points

Hardware
Training
Time (hr)

<1,000

NVIDIA T4 GPU

2

1,000 – 10,000 4

>10,000 8

Table 2. Hardware and training time recommendations based on the
number of data points

Conclusion

These recommendations are a starting point and a lower
bound. Actual performance is highly dependent on the specific
dataset, and you may need to increase the training time or
choose a different GPU to achieve your desired results.

6

Supplemental Material

Data Set Training Time (hr) Hardware Mean Bootstrapped R2

Caco2 Permeability 0.5 2 vCPUs 0.6744

4 vCPUs 0.6677

8 vCPUs 0.6669

16 vCPUs 0.6707

T4 GPU 0.6727

V100 GPU 0.6898

A100 GPU 0.6869

1 2 vCPUs 0.6616

4 vCPUs 0.6794

8 vCPUs 0.6860

16 vCPUs 0.6761

T4 GPU 0.6741

V100 GPU 0.6985

A100 GPU 0.6905

2 2 vCPUs 0.6860

4 vCPUs 0.7030

8 vCPUs 0.6857

16 vCPUs 0.6880

T4 GPU 0.7163

V100 GPU 0.7178

A100 GPU 0.7137

4 2 vCPUs 0.6978

4 vCPUs 0.6960

8 vCPUs 0.7037

16 vCPUs 0.7005

T4 GPU 0.7213

V100 GPU 0.7193

A100 GPU 0.7150

8 2 vCPUs 0.7100

4 vCPUs 0.7254

8 vCPUs 0.7081

16 vCPUs 0.7090

T4 GPU 0.7144

V100 GPU 0.7011

A100 GPU 0.7140

16 2 vCPUs 0.6960

4 vCPUs 0.7168

8 vCPUs 0.7210

16 vCPUs 0.7163

T4 GPU 0.7186

V100 GPU 0.7088

A100 GPU 0.7185

Table 3. Performance data for Caco2 permeability by training time (hr) and hardware configuration

7

Data Set Training Time (hr) Hardware Mean Bootstrapped R2

AqSolDB Solubility 0.5 2 vCPUs 0.7187

4 vCPUs 0.7228

8 vCPUs 0.7513

16 vCPUs 0.7493

T4 GPU 0.7382

V100 GPU 0.7247

A100 GPU 0.7235

1 2 vCPUs 0.7303

4 vCPUs 0.7163

8 vCPUs 0.7400

16 vCPUs 0.7447

T4 GPU 0.7078

V100 GPU 0.7411

A100 GPU 0.7295

2 2 vCPUs 0.7369

4 vCPUs 0.7116

8 vCPUs 0.7311

16 vCPUs 0.7436

T4 GPU 0.7608

V100 GPU 0.7489

A100 GPU 0.7538

4 2 vCPUs 0.7328

4 vCPUs 0.7459

8 vCPUs 0.7403

16 vCPUs 0.7611

T4 GPU 0.7824

V100 GPU 0.7642

A100 GPU 0.7744

8 2 vCPUs 0.7703

4 vCPUs 0.7710

8 vCPUs 0.7542

16 vCPUs 0.7588

T4 GPU 0.7830

V100 GPU 0.7840

A100 GPU 0.7850

16 2 vCPUs 0.7769

4 vCPUs 0.7871

8 vCPUs 0.7867

16 vCPUs 0.7504

T4 GPU 0.7959

V100 GPU 0.8006

A100 GPU 0.8054

Table 4. Performance data for AqSolDB solubility by training time (hr) and hardware configuration

Copyright © 2022 Schrödinger, Inc.

Authored by: Kyle Gion, Suraj Gattani, Zachary Kaplan

Learn more about Schrodinger’s automated engine for machine learning, DeepAutoQSAR at:
www.schrodinger.com/products/deepautoqsar

Contact Us: sales@schrodinger.com

References
1. Kaplan, Z.; Ehrlich, S.; Leswing, K. Benchmark study of DeepAutoQSAR, ChemProp, and DeepPurpose on the

ADMET subset of the Therapeutic Data Commons. Schrödinger, Inc., 2022. https://www.schrodinger.com/science-
articles/benchmark-study-deepautoqsar-chemprop-and-deeppurpose-admet-subset-therapeutic-data (accessed
2022-11-29).

2. Therapeutics Data Commons. https://tdcommons.ai/ (accessed 2022-06-15).

3. ADME — TDC. https://tdcommons.ai/single_pred_tasks/adme/#caco-2-cell-effective-permeability-wang-et-al
(accessed 2022-06-15).

4. ADME — TDC. https://tdcommons.ai/single_pred_tasks/adme/#solubility-aqsoldb (accessed 2022-06-15).

5. Sklearn.metrics.r2_score — scikit-learn 1.1.3 documentation. https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.r2_score.html#sklearn-metrics-r2-score (accessed 2022-11-29).

