
Machine-Learned 
Force Fields for 
Improved Materials 
Modeling
Machine-learned force fields (MLFFs) are designed to improve upon traditional 
force fields by incorporating machine learning models to accurately model 
the interactions between atoms and molecules. This technique is based on 
a neural network potential energy surface (NN-PES) architecture, where the 
model is trained to reproduce the total electronic energy of the system to 
chemical accuracy. 

The NN-PES architecture is computationally efficient and utilizes local atomic 
descriptors to account for the surrounding environment. The model is trained 
by minimizing prediction errors against electronic energy obtained from 
any theory, such as density functional theory (DFT). This method enables 
simulations on larger length and time scales when compared to ab initio 
molecular dynamics (AIMD) methods, but with similar accuracy. 

Previously, MLFF methods were limited to short-range interactions, but recent 
efforts have incorporated complex neural network architecture, charge 
recursive neural network (QRNN), that includes training of atomic charges to 
capture long-range interactions1. As a result, complex systems such as battery 
electrolytes can now be more accurately modeled with MLFFs. 

Our combination of OPLS4 for initial structure generation, fast DFT and MD 
engines, and leading MLFF methods makes Schrödinger the leading partner 
for MLFF generation. In this application note, we showcase the applications 
of QRNN technology in three different areas of materials science, namely the 
modeling of liquid electrolytes, polymers, and ionic liquids.

APPLICATION NOTE

Figure 1: Machine-learned force field workflow  
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Advantages of MLFF
One limitation of classical force fields is the 
inability to adjust for changing partial charges 
and polarization of atoms, leading to inaccurate 
electrostatic interactions. On the other hand, 
MLFF methods enable the dynamic adjustment 
of partial charges and polarization, resulting in 
more accurate dynamics. Since MLFF models 
are trained on DFT data, they offer a higher 
level of accuracy that is similar to ab initio 
calculations. Empirical parameters-based 
classical force fields also breakdown when 
modeling interactions in complex inorganic and 
organic systems, while MLFF can effectively learn 
the underlying potential energy surface that 
governs these interactions. Moreover, with the 
use of Desmond (Schrödinger’s GPU-accelerated 
molecular dynamics engine), MLFF simulations 
can be performed at a rate of 1ns/day for a 
10,000 atom system, allowing for larger systems 
to be simulated for sufficient periods to obtain 
converged bulk properties. 

APPLICATION 

High-Dimensional 
Neural Network 
Force Field for Liquid 
Electrolytes 2
Liquid electrolytes are one of the most important 
components of Li-ion batteries, which are a critical 
technology of the modern world. However, it is 
challenging to obtain molecular-level insights into the 
structure of liquid electrolytes and its impact on the 
bulk properties. Additionally, we lack the computational 
tools required to quantitatively calculate key properties 
of the materials (viscosity, ionic diffusivity) from first 
principles necessary to design next-generation battery 
materials. The optimization of battery electrolyte 
formulation is a complex multi-objective problem. 

Approach 
In this work, we developed MLFF for liquid electrolyte 
simulations which bridges the gap between the accuracy 
of range-separated hybrid DFT and the efficiency of 
classical force fields. Our training dataset consists of LiPF6 
salt and 7 common carbonates.* We trained the MLFF 
to a dataset of ~360K molecular clusters using seven 
rounds of active learning. The performance of the MLFF 
was validated by comparing the predicted values to the 
experimental bulk thermodynamic and transport properties 
over a range of temperatures and salt concentrations.

*Carbonates used in this study: ethylene carbonate (EC), propylene carbonate 
(PC), vinylene carbonate (VC), fluoroethylene carbonate (FEC), dimethyl 
carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC)

Results
We evaluated the MLFF model performance by 
constructing an independently sampled test set of 2.5K 
cluster data points extracted from the production MD 
trajectories of pure carbonate solvents and electrolyte 
mixtures (Figure 2a). Predictions of material properties 
made with this force field are quantitatively accurate 
compared to experimental data. Such highly accurate 
MLFF models are critical to optimize complex electrolyte 
formulations needed for advancing battery technology. 

• The absolute energies, dipole components, and force 
components are in good agreement to the reference 
level of DFT theory.

• The MLFF predicted bulk properties (such as density, 
viscosity, heat of vaporization, etc.) are in excellent 
agreement with experimental values, and provide 
significant improvement in the predicted properties for 
the pure liquid electrolytes as compared to the OPLS4.

• The MLFF computed diffusivities are in excellent 
agreement with the experimental data.  

Figure 2:  
a) Comparison of MLFF predicted energies with DFT energies;  
b) comparison of the computed viscosity of solvents with experiments;  
c) comparison of the diffusivity of Li+ ions in DEC solvent with increasing temperature.
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APPLICATION

Development 
of Scalable and 
Generalizable MLFF 
for Polymers 3
Classical force fields such as OPLS have been successful 
for polymer systems in capturing some properties such 
as density at a constant temperature, however, for 
certain dynamic and thermodynamic properties such as 
self-diffusivity, viscosity, and specific heat, it is limited to 
primarily obtaining relative trends.  

Approach 
We developed an MLFF workflow for polymers and 
demonstrated its scope by applying it to ethylene glycol 
oligomers. We trained on samples containing monomers, 
dimers, and trimers of ethylene glycol to create an MLFF 
model and evaluated the model by predicting the oligomer 
properties (density, self-diffusivity, and specific heat) and 
comparing them with DFT and experimental results.  

Results
We evaluated the MLFF model performance by comparing 
the predicted energies with the DFT energies. The below 
parity plot shows that the model is performing well. The 
MLFF potentials accurately capture the diffusion dynamics 
and surpass the capabilities of what the classical force field 
can provide (Figure 3b). 

This demonstrates that our MLFF for polymers is scalable 
and can be extended to compute complex properties 
dependent on the chain dynamics, such as mechanical 
properties and thermophysical properties, including the 
glass transition temperature. Our work shows that the 
advancing area of MLFF has application in a critically 
important materials area, polymers. This significant 
advance was not possible with previous MLFFs and is 
an important step toward simulations with the ideal 
matching of accuracy and speed for key materials design 
parameters.

APPLICATION

Machine Learning 
Fitted Force Fields 
for Ionic liquids
Ionic liquids represent an intermediate class of molecules 
that are liquid at room temperature, but are composed of 
completely charged cation and anions. They are useful for 
advanced batteries, biopharmaceuticals, and as industrial 
solvents. The charged nature of ionic liquids make them 
difficult to simulate and can only be correctly fitted with 
more expensive polarizable force fields. DFT based 
simulations are limited to only simulating 10s of molecules. 

Approach
We train an ML force field on DFT energies and forces for 
neutral organic molecules, charged organic molecules, 
dimers, and small clusters. We then run molecular 
dynamics on a simulation box containing between 1000-
3000 atoms for several classes of ionic liquids.

Results
MLFF ensemble models enable stable simulation 
performance of simulations over 2ns. The diffusion 
coefficients predicted by the MLFF agree with experimental 
results over a wide range of ionic liquid chemistries (Figure 
4). These results demonstrate the first ab initio based 
simulation of ionic liquids at such length and timescales.

Figure 3:  
a) snapshot from MLFF MD of 8000 atom system of PEG 1000 chains;  
b) comparison of diffusivity calculations with experiments.

Figure 4:   
Comparison of MLFF predicted diffusion coefficients of ionic liquids with experimental data.
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How we can help
Schrödinger provides research services focused on the development of advanced machine-
learned force fields to facilitate accurate molecular dynamics simulations for a range of 
applications and to enable modeling of complex material systems with high speed and accuracy.
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