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Dramatically 
improving hit rates 
with a modern virtual 
screening workflow 
Scientists from Schrödinger’s Therapeutics Group leveraged a modern 
virtual screening workflow powered by ultra-large scale docking and 
absolute binding free energy calculations to achieve a double-digit hit 
rate for diverse protein targets.

Executive Summary
• Schrödinger developed a modern virtual screening workflow for 

small molecule ligands and fragments that enabled Schrödinger’s 
Therapeutics Group to repeatedly achieve unprecedented success in 
its hit discovery efforts  

• The modern virtual screening workflow efficiently screens ultra-
large libraries of up to several billion purchasable compounds with 
unrivaled accuracy, through machine learning enhanced docking 
and absolute binding free energy calculation technologies

• The workflow was successfully applied to a broad range of  
targets across multiple screening campaigns, for both whole  
ligands and fragments

• Schrödinger’s Therapeutics Group used the workflow to identify 
multiple experimentally confirmed hits with diverse chemotypes 
while dramatically narrowing down the number of compounds 
made or purchased and assayed in the lab — frequently achieving 
double-digit hit rates



Background 
For years, hit discovery efforts using traditional 
virtual screening (VS) approaches have suffered 
from low hit rates, typically 1-2% in Schrödinger’s 
experience, which means that 100 compounds 
would have to be synthesized and assayed for 
1-2 hits to be identified. These challenges have 
largely been attributed to two key factors: 

First, traditional VS campaigns have been limited 
to libraries in the hundreds of thousands to a 
few million in size, providing limited coverage 
of chemical space. This is particularly critical for 
difficult-to-drug targets, where the random hit 
rate in the library is expected to be low, hence 
fewer hits are expected to be recovered with 
smaller libraries. In recent years, the emergence 
of ultra-large commercial chemical libraries such 
as Enamine REAL and research demonstrating 
the value of screening large libraries has further 
driven the need for technologies that can 
efficiently screen ultra-large chemical space.1 

Second, traditional VS methods have been 
limited by the inaccuracy of the scoring methods 
utilized to rank order different ligands, such as 
GlideScore. Given a static view of the complex 
geometry and an approximate treatment of 
desolvation, such empirical scoring functions 
aren’t theoretically suited to quantitatively rank 
compounds by affinity. Thus, while docking is a 
powerful technology for early enrichment, ligand 
docking scores are not expected to and generally 
do not correlate with measured potency.

As a result of these limitations, most resources 
spent on virtual screens using traditional methods 
are often wasted. A more cost-effective and efficient 
approach to accurately screen ultra-large libraries is 
required to improve the success of virtual screens 
and ensure it is a viable path for hit discovery.

Figure 1: Overview of Schrödinger’s modern virtual screening workflow.
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Figure 2: Schematic showing an active learning workflow for hit discovery.
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Design Approach
Over several years, Schrödinger’s Therapeutics 
Group has selected a number of challenging 
targets with the goal of identifying potent hit 
molecules. The group turned to a modern VS 
workflow, leveraging machine learning-guided 
Glide docking and highly accurate Absolute 
Binding FEP+ (ABFEP+) calculations, to screen 
and rescore ultra-large chemical libraries in 
a way that minimizes wet-lab costs and time 
while increasing the number and quality of hits 
available for hit-to-lead progression (Figure 1).

Step 1: Ultra-large scale screening 
for small molecule libraries

Starting with libraries on the order of several billion 
compounds (or libraries of up to 500 million for 
fragments), the team performed prefiltering based 
on physicochemical properties to eliminate any 
undesired groups. Next, they carried out a high-
throughput virtual screen with Active Learning 
Glide (AL-Glide), in order to quickly identify the 
most promising compounds. Active learning is an 
effective supervised learning strategy that prioritizes 
training data for the next round of training based on 
a well-defined objective. AL-Glide combines machine 
learning (ML) with docking so that enrichment with 

docking can be applied to libraries of billions of 
compounds.2 By using this approach, only a fraction 
of the library is docked, reducing the computational 
cost significantly to a more reasonable level.

At the start of an active learning cycle, a manageable 
batch of compounds is selected from the complete 
data set of library compounds and docked. These 
selected compounds are then taken and added to 
the training set. The model is then trained on new 
information and continues to iterate this process 
as the machine learning model becomes a better 
and better proxy for the docking method (Figure 2).

This ML-guided docking model can evaluate 
compounds much more quickly than brute 
force docking. While the typical docking 
calculation with Glide might take an average 
of a few seconds per compound, the ML 
model can evaluate or make a prediction 
significantly faster, leading to a drastic increase 
in throughput. As a result, the ML-generated 
model is used to evaluate the entire library.

After completion of the AL-Glide screen, the 
team performed a full docking calculation using 
Glide on the best scored compounds, typically 
in the range of 10-100 million compounds.



Figure 3: Thermodynamic cycle for Absolute Binding FEP+ 
(ABFEP+). As part of the modern virtual screening workflow 
on discovery programs, the accuracy provided by the rigorous 
calculations in ABFEP+ consistently showed very early 
enrichment in top actives and reduced false positives, which is 
critical when screening ultra-large libraries.
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Step 2: Rescoring 

The most promising compounds based on Glide 
docking scores were then selected and subjected 
to a rescoring step using WScore, a sophisticated 
docking program that leverages explicit water 
information in the binding site to enrich active 
molecules over Glide alone, in large part due to 
improved pose prediction. WScore helps identify 
better compounds to pass to ABFEP+, the next 
scoring step, and to provide more reliable binding 
poses, reducing false positives in the process.3 

Compounds with the best enrichment scores 
from docking are selected for rigorous 
rescoring with ABFEP+. ABFEP+ is a protocol in 
Schrödinger’s FEP+ technology that allows the 
accurate calculation of binding free energies 
between the bound and unbound states of the 
ligand/protein complex (Figure 3).4,5 ABFEP+ has 
proven to reliably correlate with experimentally 
measured binding affinities. Unlike relative 
binding FEP+, ABFEP+ does not require a similar, 
experimentally measured reference compound 
as a starting point. Because ABFEP+ can evaluate 
and accurately score diverse chemotypes, it is a 
linchpin technology to discover the most potent 
compounds in a virtual screen campaign.

Step 3: Large-Scale Rescoring

ABFEP+ is computationally expensive when  
compared to Relative Binding FEP+ (RB-FEP+),  
requiring multiple GPUs per ligand and  
approximately 4x more compute time. It is  
generally only practical to run thousands of ABFEP+  
calculations on a hit discovery campaign. In order 
to realize the true enrichment benefit of ABFEP+, an 
active learning approach is utilized to score a much 
larger number of compounds.

Applying the modern 
virtual screening 
workflow to fragments
Experimental fragment screening has led 
to multiple FDA-approved drugs and clinical 
candidates. By adapting this modern workflow to 
fragment screening, Schrödinger’s Therapeutics 
Group has successfully scaled up screening to 
millions of fragments, as compared to 3k to 
30k fragments screened by traditional HTS. 

The in silico approach addresses a fundamental 
limitation of experimental fragment screening 
— the fragments need to be soluble enough to 
be assayed at high concentrations (100 μM to 
mM) against various targets. However, estimating 
the potency rigorously in silico is not limited by 
solubility, so the potency of the fragments can 
be assessed and subsequently pursued if they 
are predicted to be soluble enough given their 
estimated potency. The binding potency to the 
specific target is computed using active learning 
ABFEP+. Priority fragments are finally evaluated 
for solubility in silico at predicted potency using 
Solubility FEP+.6 In essence, the approach achieves 
scale by inverting the problem of potency and 
solubility, enabling the discovery of highly potent 
and ligand efficient fragments that would not 
exist in experimental fragment libraries.

To date, the team has completed a total of nine 
large fragment-based* virtual screens on multiple 
challenging targets, including one with a homology 
model. All nine screens yielded multiple potent 
ligand efficient hits, ranging from low nM to 
30 µM in potency and double-digit hit rates.



Figure 4: Impact of transitioning from traditional to modern virtual 
screening on hit rate.
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Conclusion
In silico hit identification has long relied on smaller scale libraries 
and lower accuracy methods to screen the chemical space, 
resulting in low hit rates and largely wasted wet lab resources.

By transitioning to a modern workflow that leverages rigorous 
physics-based methods, including absolute binding FEP+ combined 
with machine learning, Schrödinger’s Therapeutics Group has 
been able to successfully apply the workflow to a range of diverse 
targets across several projects and achieve a reproducible double- 
digit hit rate. In the process, the team dramatically reduced the 
number of compounds synthesized and tested to reach the project’s 
lead candidate, reducing overall costs and project timelines.

This strategy empowers drug discovery teams by enabling them to 
explore the fast-growing ultra-large chemical libraries. It allows efficient 
navigation through the vast maze of chemical space, significantly 
improving the odds of identifying multiple hits with better properties 
and selectivity. Moreover, it accelerates the drug development process, 
leading to the faster discovery of higher-quality, novel drug candidates.

Impact of Schrödinger’s 
modern VS workflow on 
hit rates across multiple 
projects and targets
Using these modern VS approaches, scientists 
at Schrödinger were able to demonstrate a 
drastic improvement in hit rates compared 
to traditional screens. As a result, several 
diverse hit compounds with high predicted 
binding affinity were identified, acquired, 
experimentally tested and confirmed as 
hits — resulting in an impressive double-
digit percentage hit rate (Figure 4).
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Enabling digital technologies to drive discovery programs

Active Learning 
Glide
Powerful machine 
learning (ML) tool that 
trains ML to efficiently 
prioritize and select 
compounds for 
experimental evaluation 
or further screening 

Glide
Leading industrial solution 
for easy-to-use, reliable 
ligand-receptor docking

WScore 
Advanced docking 
program that leverages 
explicit water information 
in the binding site to 
provide more accurate 
scoring of ligands

FEP+
Digital assay for predicting 
protein-ligand binding 
across broad chemical 
space at an accuracy 
matching experimental 
methods
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