

Accurate Modeling of Receptor Functional Response: GPCRs and Beyond

Lingle Wang, Martin Vögele

February 28, 2024

Today's Speakers

Lingle Wang Senior Vice President Schrödinger Martin Vögele Senior Scientist Schrödinger

Reliable Binding Potency Prediction with FEP+

FEP+ is reaching experimental accuracy in a recent large-scale validation on small molecule datasets.

Data gat nome

Data set name	Proteins in data set	No. compounds
FEP+ R-group set16	BACE1, CDK2, JNK1, Mcl1, p38, PTP1B, thrombin, TYK2	199
FEP+ charge-change54	CDK2, DLK, EGFR, EPHX2, IRAK4, ITK, JAK1, JNK1, PTP1B, TYK2	53
OPLS stress set27	BACE1, CHK1, Factor Xa	114
OPLS drug discovery27	A, B, C, D, E	93
Water displacement34	BRD4(1), CHK1, Hsp90, scytalone dehydratase, TAF1(2), thrombin, urokinase	76
FEP+ Fragments55	T4 lysozyme, LigA, Mcl1, MUP-1, JAK-2, hsp90, p38	79
FEP+ macrocycles31	BACE1, CHK1, CK2, MHT1, HSP90	34
FEP+ scaffold-hopping32	BACE1, β -tryptase, CHK1, ER α , Factor Xa,	17
Merck sets56	CDK8, cMet, Eg5, HIF- 2α , PFKFB3, SHP-2, SYK, TNKS2	264
GPCRs57;58	A2A, OX2, P2Y1	98
Bayer macrocycles59	Ftase, BRD4	8
Janssen BACE136;60	BACE1	74
MCS docking61	HNE, Renin	49
Miscellaneous	CDK862, Galectin10;63, BTK64, HIV1 protease65, FAAH66	79
	Total	1237

Ross G., et. al. Commun. Chem. 6, 222, (2023)

Schrodinger Online Course: Free energy calculations for drug design with FEP+

Accuracy metric	Experimental survey FEP+ benchma	
Pairwise RMSE (kcal/mol)	0.91 [0.83, 1.11]	1.25 [1.17, 1.33]
Pairwise MUE (kcal/mol)	0.67 [0.61, 0.83]	0.98 [0.91, 1.05]
Edgewise RMSE (kcal/mol)	N/A	1.17 [1.08, 1.25]
Edgewise MUE (kcal/mol)	N/A	0.91 [0.84, 0.98]
R^2	0.79 [0.75, 0.82]	0.56 [0.51, 0.60]
Kendall $ au$	0.71 [0.65, 0.74]	0.51 [0.48, 0.55]

G-Protein–Coupled Receptor (GPCR) Activation

The binding potency of a ligand may not correlate with its efficacy.

- GPCRs transmit signals across lipid membranes.
 - ⇒ "control panel of the cell"
- Most important class of drug targets!
 ~34% of all FDA-approved drugs
- Agonists activate a receptor upon binding by stabilizing an **active** conformation.
- Antagonists bind to the receptor but then they stabilize an inactive conformation.

G-Protein–Coupled Receptor (GPCR) Activation

Efficacy depends on the structural equilibrium between active and inactive states.

(receptor-dependent, base can be zero)

Efficacy Prediction by Comparing Conformations

The binding free energy difference between active and inactive states predicts efficacy with high accuracy.

- Study compares binding free energies on the active and inactive state for 180 target-ligand pairs.
- The binding free energy difference ΔΔG is calculated via FEP+.
- Ligands are classified via a target-specific threshold → Accuracy: 98%

Schrödinger

Figure: Comparison between $\Delta\Delta G$ calculated using FEP+ and experimentally determined efficacy (agonist/antagonist)

Accurate Modeling of Receptor Functional Response: GPCRs and Beyond

Outline

Methods Overview

- Example: β2-Adrenoceptor
- Thermodynamics of Ligand Efficacy
- Simulation protocols

Results Summary

- Results Overview
- Accuracy across Chemical Space
- Limitation: Receptor Conformations
- The Role of the Template
- The Role of the Ligand Poses
- Beyond GPCRs

Conclusions

Outlook

Methods Overview

Example Problem Statement

Is Salmeterol an agonist or an antagonist of the β2-Adrenoceptor?

Thermodynamics of Ligand Efficacy

Schrödinger

- The presence of a ligand changes the equilibrium between two receptor states.
 - Agonists: $\Delta \Delta G = \Delta G_{holo} \Delta G_{apo} < 0$
 - Antagon.: $\Delta\Delta G = \Delta G_{holo} \Delta G_{apo} \ge 0$
- ΔG_{apo} is unknown but ligand-independent.
- ΔG_{holo} can be written as $\Delta G_A \Delta G_I + \Delta G_{apo}$.
- For the shift of the equilibrium caused by the ligand, we get $\Delta\Delta G = \Delta G_A \Delta G_I$.

We only need two AB-FEP runs per ligand! (ideally)

Thermodynamics of Ligand Efficacy

Agonists and antagonists should separate along $\Delta\Delta G = \Delta G_A - \Delta G_I$.

Thermodynamics of Ligand Efficacy

Schrödinger

 $\Delta\Delta G = \Delta G_A - \Delta G_I$ = -19.6 kcal/mol + 12.9 kcal/mol $\Delta\Delta G = -6.7 \text{ kcal/mol} < 0$

Prediction: Salmeterol favors the active state of the β 2-adrenoceptor. It is likely an agonist.

Clinic: Salmeterol is indeed a β 2AR agonist and used against asthma and COPD.

Example: β2-Adrenoceptor

- Agonists and antagonists are well separated.
 - Areas under the curves (AUC) of receiver operating characteristic (ROC) and the precision recall curve (PRC) are 1.0 – the perfect score.
- → $\Delta\Delta G = \Delta G_A \Delta G_I$ is indeed an *excellent predictor* for agonism.
- The separation is not always exactly at $\Delta\Delta G = 0$.
 - Accuracy < 1.0, but still perfect predictability
- → Can *calibrate offset* with a few known ligands for every study if needed!

Simulation Protocol — Starting Poses

- *Pick frames* from template MD simulations that are *representative* of the respective state.
- Align the investigated ligands to each template and *replace the template ligand* with them.
 - Ligands from experimental structures:
 - ⇒ Align via the receptor structure.
 - Ligands congeneric to the template ligand:
 - ⇒ Align via the ligand.
 - Alternative options:

Schrödinger

- ▷ MCS-docking (max. common substructure)
- ⇒ IFD-MD (induced-fit docking + mol. dyn.)

each investigated ligand, replacing the template ligand in an inactive and in an active structure

Simulation Protocol — AB-FEP

Absolute-Binding Free Energy Perturbation

- Calculate binding free energy of a ligand by perturbing the system's Hamiltonian.
- Fading the ligand in and out via λ parameter.
- Enhanced sampling via replica exchange.

Efficacy Prediction

- Run AB-FEP on the inactive and the active structures for each ligand.
- Rank them by the difference of the resulting binding free energies: $\Delta\Delta G = \Delta G_A \Delta G_I$.

AB-FEP on each pair of receptor template and investigated ligand

Difference of the binding free energies for each active-inactive pair

Simulation Protocol — Restrained AB-FEP

Problem

- The binding pocket partially adapts to the new ligand during AB-FEP.
- Not always clear whether it is still in an active or an inactive state.

Solution

- Use position restraints to prevent transition!
 - Reproduce conformational ensemble of each state.
 - Wide enough to allow for flexibility.
 - Just narrow enough to prevent transition.
- Flat-bottom harmonic restraints to conformation clusters from template MD simulations.

Results Summary

Results for GPCRs – Overview

High Accuracy across Diverse Chemical Space

- Small changes in morphinan opioids can qualitatively change their function.
- These activity cliffs are predicted correctly.

- The adenosine receptor ligand LJ-4517 features hallmarks of agonists and of antagonists.
- We predicted it correctly as an antagonist.

We correctly predicted the efficacy of ligands that are chemically very different from the ligands in both template structures.

Large Receptor Conformational Changes may not be captured in short AB-FEP simulations

Example: LUF5833 on the Adenosine Receptor 2A

Predictions are inaccurate if a ligand's preferred receptor conformation differs too much from the templates.

⇒ Remedy: Add additional templates to capture the relevant conformational landscape.

predicted as antagonist (+2.13)

MD Relaxation May Address Crystal Structure Artifacts

Example: δ-Opioid Receptor

- Instead of using cluster centers from MD, we restrained FEP to the original PDB structures.
- Prediction is worse because of crystal contact artifacts.

The Importance of Ligand Poses

Example: Adenosine Receptor A1 from ATOM3D benchmark dataset.

Best LEP method in ATOM3D^[1]. Beat all tested ML models.

AB-FEP on the best-ranked pose from unguided Glide docking

Outliers due to some bad poses in the benchmark structures!

AB-FEP on poses from Glide guided by MCS to resolved ligands

Even better predictions with good starting poses!

Beyond GPCRs – Retinoic Acid Receptor α

RARA BMS493 COTEPTESSOT Tragment

Perfect separation, even without using restraints.

⇒ Efficacy prediction via FEP+ works beyond GPCRs.

PDB 3KMZ: RARA LBD with inverse agonist BMS493 and a fragment of nuclear receptor corepressor 1.

Conclusions and Outlook

Main Conclusions

Study Summary

- We can predict the functional response of a receptor via the ligands' free energy of binding to active and inactive structures
- Our workflow using Schrödinger FEP+ achieves excellent performance on several important drug targets.

FEP+ can be used to model ligand efficacy, not only to predict binding affinity.

Preconditions and Best Practices

- Knowing the relevant *conformational states* of the receptor.
- \rightarrow experiment, predictions, enhanced sampling
 - Good estimates for the *ligand poses* in each conformational receptor state.
- \rightarrow experiment, alignment, docking, IFD-MD,...
- Accurate *modeling*. Poses, protonation states, ions,... might differ between states.

The *usual FEP+ best practices* and pitfalls apply.

Read more about it?

- Manuscript published in JCTC: <u>https://doi.org/10.1021/acs.jctc.3c00899</u>
- Preprint on ChemRxiv: <u>https://doi.org/10.26434/chemrxiv-2023-p1507</u>

pubs.acs.org/JCTC

Is the Functional Response of a Receptor Determined by the Thermodynamics of Ligand Binding?

Martin Vögele, Bin W. Zhang, Jonas Kaindl, and Lingle Wang*

Cite This: https://doi.org/10.1021/acs.jctc.3c00899

Article

Outlook – Biased Signaling

- Arrestins inhibit G-protein signaling, but also invoke their own pathways.
- Some agonists can activate the receptor in a pathway-selective way, favoring signaling either via arrestin or via G proteins.
 - ▷ biased signaling
- Activating only the desired pathway can help avoid serious side-effects.

Figure: Biased signaling on the μ -opioid receptor. Image from [Spangler & Bruchas, Cell 2017]

Serotonin Receptor 2B – Biased Signaling

- Compare the binding affinity in the balanced state to the binding affinity in the arrestin-biased receptor state.
- Template ensembles via two MD simulations from the same structure
 - one with a balanced agonist (serotonin)
 - one with an arrestin-biased agonist (ergotamine)
- Encouraging preliminary result:

Schrödinger

Good separation of balanced and arrestin-biased ligands.

Acknowledgments

Method Development

- Bin Zhang
- Jonas Kaindl

Webinar

- Katie Montgomery
- Virginia Ferrari
- Marina Takahashi

Help and Discussions

- Mikolai Fajer
- Wei Chen
- Di Cui
- Dilek Coskun
- Anthony Clark
- Edward Miller

- Robert Abel
- Nour Saleh
- João Rodrigues
- Chris Szlenk
- Roy Nassar
- Jared Sampson

... and everyone at Schrödinger!

Thank you!