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Pioneering
Digital
Chemistry

30+ years of innovation

Over 850 employees worldwide; >40%
Ph.D.

>50% of employees dedicated to R&D

~1,785 customers worldwide

Pipeline of 25+ collaborative and proprietary programs
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A predict-first approach

* Manual materials design
Traditional | < Candidate materials synthesized and tested over weeks

materials Condidate matorial
. Materials selection or purchase andidate materials
deS|gn Property . may not meet

Candidate synthesis and purification testing requirements

* 100Ks of materials tested computationally
* Candidate materials identified digitally over days

Schrodinger
digital
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uilding predictions screen property profile
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Informed selection

Property / Behavior to optimize, e.g.:

* Miscibility
* Viscosity
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Modeling impact on materials design

Design Cycle

In Silico
Property
Prediction

/

Assessment of
Performance

J

Enumeration
& Virtual
Screening

\\

Synthesis and
Characterization

New
Material
Idea

[
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In Silico

. Reformulation

Discovery =% Development = Manufacturing = Deployment ——>

Lifespan

Optimize
Process
Parameters

Root

@—— Cause
Analysis
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Service

Enhanced '

Recyclability
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Benefits of leveraging digital technology

Less More

* Time to insights and target solutions * Hypotheses to test

* Cost to optimize materials * Access to chemical space
development process * Optimization of multiple property

« Experimental synthesis and parameters at the same time
testing of materials with  Dynamic collaboration in the
undesirable properties design process

e Distance between teams and * High-quality materials with desired
expertise areas performance and properties
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Synergy between physics-based modeling and

machine learning

-

Physics-based
modeling

\

@j Schrédinger

2N

Physics &
Machine Learning

Incorporate physics-based
information about materials
into practical ML models.

Build targeted ML models to
expand the impact of
physics-based simulations.

\

Machine
learning
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Physics-based modeling

Build

Construct and design
complex systems

Simulate

Access all methods in a
single platform

Analyze

View and interpret outputs to

guide decision-making

3D builder

2D sketcher

Surfaces &
Interfaces

& Nanoparticles

Disordered
Structures

Structured Complex

polviners Liquids Blends

Size

Electronic
Periodic DFT
Electronic .
Molecular DFT S
%55

. oL i
HNAy
v "T)‘

Atomistic
Molecular Mechanics
Molecular Dynamics

Mesoscale
Coarse Graining
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achine learning

Featurize

Generate extensive descriptors
for all classes of materials

Build Models

HPC-supported, automated

Predict

Use top model or consensus

model-building prediction on unseen systems

Capabilities for: small molecules, organometallics, polymers, periodic inorganics, and formulations

e
-
-
»
X
Cr
v

Small molecules

*  Physiochemical,

topographical descriptors

Binary fingerprints (RDKit,

Canvas)

* Graph-based convolution
neural networks

Physics-based descriptors:
* Quantum mechanics
+ Auto Reaction Workflow

£

T

Polymers
+ Taking into account
connections between
repeat units
+ RDKit fingerprints +
customized descriptors

Physics-based descriptors:
+ Molecular dynamics
* Quantum mechanics

Periodic inorganic
solids
¢+ Element
+  Lattice structure
+  Oxidation state
* Intercalation descriptors
+ 3D SOAP (with PCA)

Physics-based descriptors:
+ Periodic quantum
mechanics

L
4 2,
3
A,
e R
Formulations and
mixtures
+ Composition
+  Chemistry of the
components
+  Experimental/processing
conditions

™

Physics-based descriptors:
* Molecular dynamics

UcCode v Score | S.0. | R2 | RMSE = @2 02 M (Nul

Continuous Y
ndritic38 0.859  0.3468 0.8584 0.3451 0.9036 -0.0071

Informative

descriptors 0.8319  0.3664 0.8415 0.3770 0.8849 -0.0071

Feature Selection + Categorical Y
0.4017 0.8216 03384 0.8400 0.0146
Fingerprints Kpts_dendrit 0.409 0.8142 0.3912 0.7862 0.0146

+ Build
Structure kpls_linear_23  0.8039  0.4215 0.8030 0.4084 0.7662 0.0185

Property to fit
q kpls_dendrit L7941 0.4329 07921 0.4143 0.7592 0.0185
Descriptors
B kpls_radia L7907 0.4468 07836 0.3997 0.7218 -0.0164 LS 2 T Il 133
Fingerprints L7833 0.4213 0.8015 0.4255 0. 0.0192 Electrica’ 0.204 Electrica Electrical -0.921
Single Model M 7 o s |0.7710]|5.3005 |s.7050 |0 028 Predicted -0.405 | Predicted Predicted -0.843
b {inedzctedizy:49> B kred fotedi. 020 W]
or - 0.7793  0.4492_0.7753 0.4219 0 —o.0130

Consensus M,

Train/Test Splits Learning Methods

Report, B RP, Bayes, .
— 0 1|
RP, Bayes, Bayes
Rank, Sort, Cap
MLR, KPLS, MLR
v KPLS

MLR, KPLS, etc.
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User-friendly GUl and comprehensive API

MS Maestro
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Maestro Materials Science - 2021-1_sandbox.prj
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Python API

4 A
Comprehensive API for

programmatic interaction with
Schrodinger software

+ ~ export SCHRODINGER=/opt/schrodinger/suites2024-1

+ ~ $SCHRODINGER/run periodic_dft_gui_dir/qe2mae.py -h
usage: $SCHRODINGER/run periodic_dft_gui_dir/qeZ2mae.py
[-h] [-last_only] input_file

Converter script from Quantum ESPRESSO output file to Maestro structure
file. Copyright Schrodinger, LLC. All rights reserved.

positional arguments:

input_file Quantum ESPRESSO output file (.out, .save.gegz).
optional arguments:

-h, -help Show this help message and exit.

-last_only Save only last structure. (default: False)

-+ o~

- v
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Solutions for all applications

Consumer Catalysis & Energy Pharmaceutical
Packaged ySIs Semiconductor Capture & Formulation &
Reactivity :
Goods Storage Delivery

Organic Polymeric
Electronics Materials

Tailored solutions that reduce cost, reduce risk, shorten timelines

Metals,

Alloys &
Ceramics

(@jj Schrﬁdinger Not for public distribution
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A&D Applications

More sustainable
batteries for electric
aviation

High-perfo
sealants and seals
More efficient

Long-lasting bodies
and wi
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A&D Applications

Composites and Lubricants,
ceramics fuel additives,

hydraulic fluids

Superalloys Propellants
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Polymeric materials: select capabilities
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\ ) Croshaw, C. et al. Polymer degradation and stability 2022, 200, 109968.
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Fast-Tracking Next-Gen Polymers:
How SABIC is Leveraging Machine
Learning and Physics

\
With the success of this project, we are
now inspired in adopting a )
‘computation-first’ approach in our L NKTO BLOG
current and fUture projects. www.extrapolations.com/fast-tracking-n
] ) , ext-gen-polymers-how-sabic-is-
—Valdy’a Ramakrlshn-an, SElele leveraging-machine-learning-and-
— André van Zyl, Sabic / physics/

ﬁ% LI_IJ
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Uncovering Better Materials for the
Spacecraft of Tomorrow

/

14

The advantage of digital simulation is that
it can eventually help cut down on the
number of new molecules we’'d need to
synthesize, leading to a more efficient and
less resource-intensive iteration cycle.

— Levi Moore, United States Air Force Research

k Laboratory
\
@@ SChradinger | us. AT::ORCE

LINK TO BLOG

www.extrapolations.com/uncovering-
better-materials-for-the-spacecraft-of-

tomorrow/
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Capabilities: aerospace and defense

Polymers, Composites and Formulations

a

Q

Builders and enumeration (homopolymers, block copolymers, semicrystalline polymers, ladder polymers,

carbohydrates/biopolymers, multicomponent mixtures, interfaces, formulations)
Methods

m
0

All-atom molecular dynamics simulation (OPLS force field)
Coarse-grained simulation
J  Martini force field (database parameters)

1 Dissipative particle dynamics (DPD), automated particulation and force field parameterization

Physics-based prediction of:

J
J
J
J
J
J
J
J

o000 00C

Glass transition temperature (Tg)

Coefficient of thermal expansion (CTE)

Mechanical response (e.g. stress-strain, elastic constants)

Penetrant loading (water, solvent; function of relative humidity and/or temperature)
Evaporation

Diffusivity and migration

Conformational statistics

Dielectric properties (e.qg. refractive index, Abbe number, static dielectric constant, complex
permittivity)

Wettability (contact angle)

Interaction energy at interface

Clustering/aggregation/additive binding

Viscosity

Thermal conductivity

Surface tension

Miscibility (solubility parameters), solubility of additives/contaminants

Enzyme degradation

@j Schrédinger

Reactivity and Catalysis

1 Cross-linking
J Realistic curing simulations
J  Prediction of gel point

Polymer and molecular degradation
1 Bond dissociation energies
- Prediction of decomposition products

High energy materials

Reaction mechanism elucidation
[ Energy landscape for reactants,
intermediates, and products
1 Automated transition state search

Automated catalyst design

Polymerization reaction barriers

Machine Learning

J  Descriptor generation
- Molecular descriptors
J Polymer descriptors
J Formulation descriptors (composition)

J  Pre-trained ML models (e.g. dielectric
constant, glass transition temperature)

1 Automated ML model building

Solid-State Materials

a Builders and enumeration
- Crystals (pure inorganics, alloys,
additives/dopants)
-1 Slabs and interfaces

Physics-based prediction of:

- Surface energy

J  Equilibrium lattice constants

J  Density of states and band gaps

- Mechanical properties (elastic
constants / bulk moduli)
Dielectric constants
lon migration in bulk structures with
nudged elastic band (NEB)
simulations
Intercalation potential
Defect formation energies with
corrections for charged defects
Equation of state predictions
Effective screening medium

Microkinetic modeling

Reaction mechanism elucidation
-  Energy landscapes
J  Automated transition state search
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How to work with Schrodinger

@j Schrédinger

&

Software License

Leverage molecular simulations
in-house with extensive
Schrédinger support

o

Contract Research &
Development

Leverage Schrddinger scientific
and engineering expertise to
solve your research challenges
and enable your workforce

-

N
4\
Contact:

Jorge Avillez, Materials Science Account Manager

Not for public distribution
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