

Schrödinger: for Academics

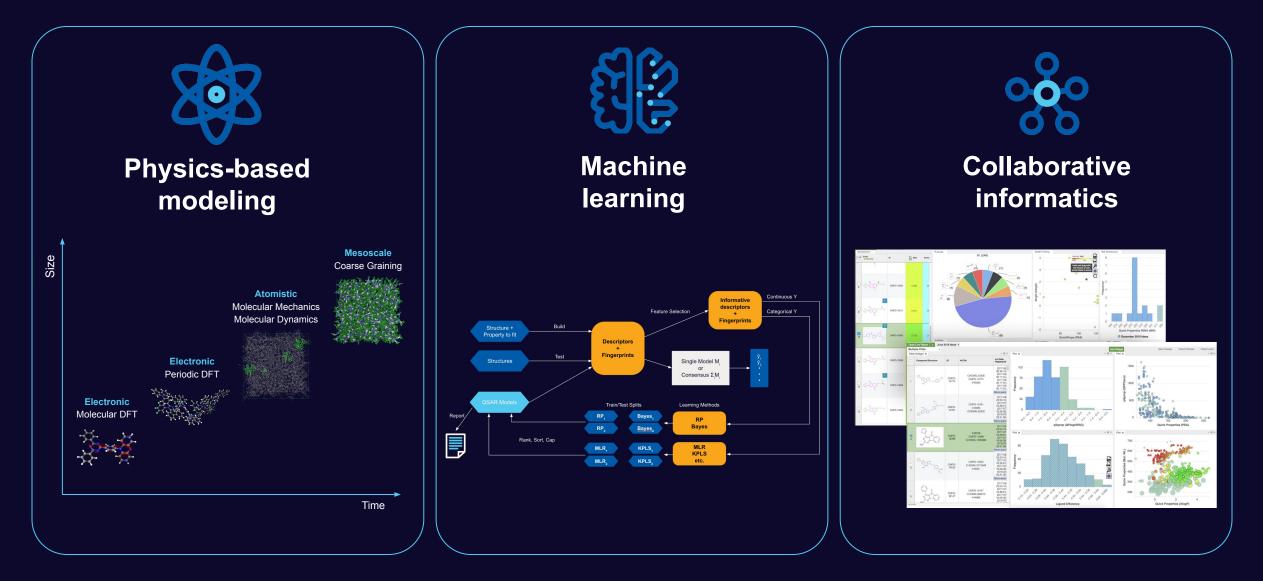
Schrödinger

Pioneering Digital Chemistry

30+ years of innovation

Over 850 employees worldwide; >40% Ph.D.

>50% of employees dedicated to R&D



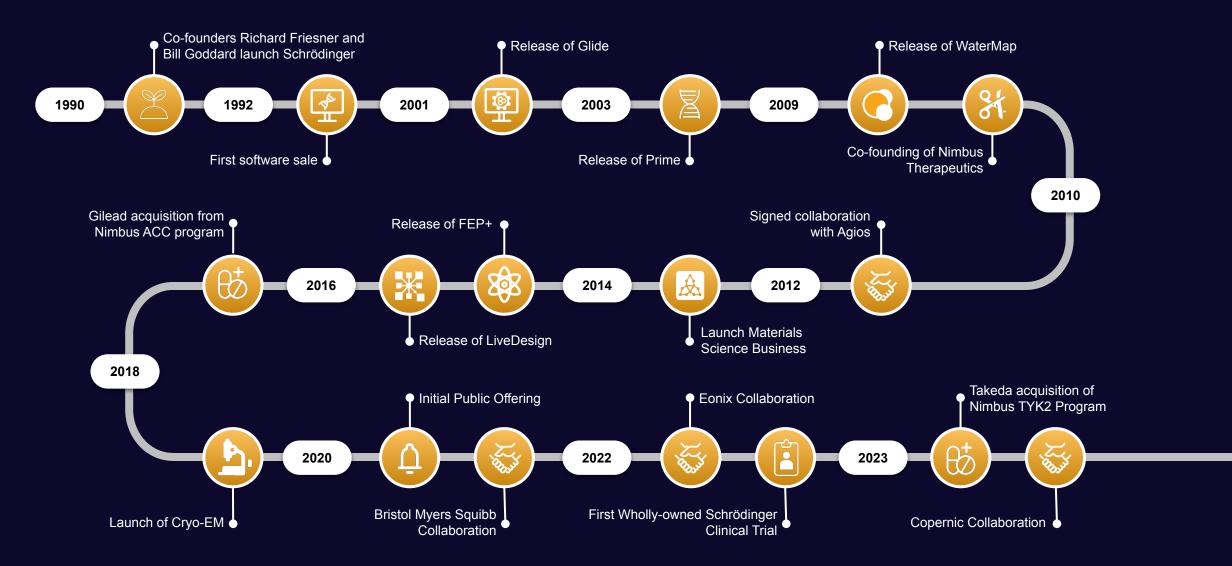
~1,785 customers worldwide

Pipeline of 25+ collaborative and proprietary programs

Digital chemistry strategy built on three pillars

How to work with Schrödinger

Introduction to Schrödinger



MISSION

To improve human health and quality of life by transforming the way new medicines and materials are discovered through advanced computational methods

30+ year history of innovation

A predict-first approach

Model

building

 Manual materials design Traditional Candidate materials synthesized and tested over weeks materials Candidate materials Materials selection or purchase design Property may not meet testing Candidate synthesis and purification requirements 100Ks of materials tested computationally Schrödinger Candidate materials identified digitally over days digital chemistry Best performing candidate

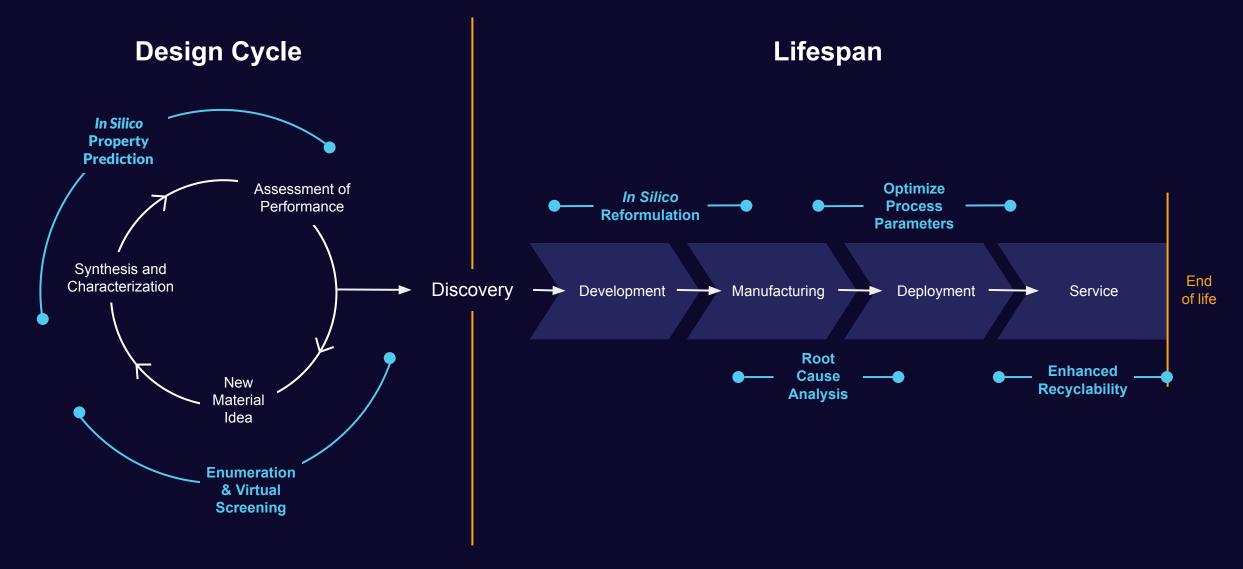
Analysis

and screen

Property

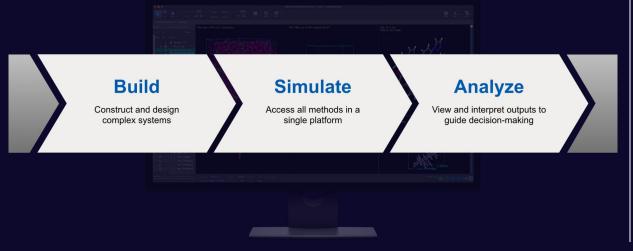
predictions

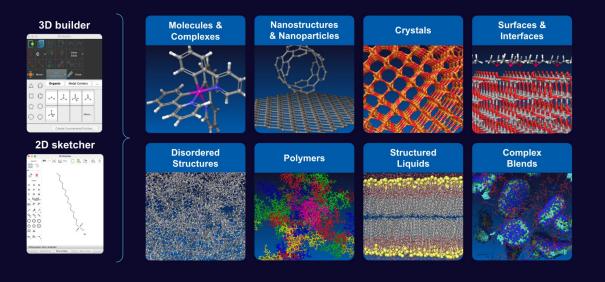
Simulations

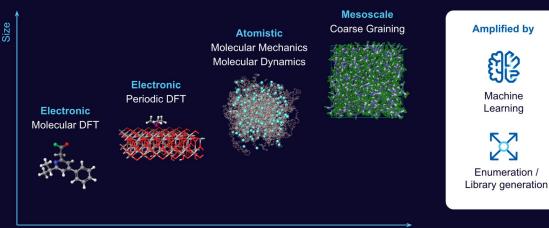

platform

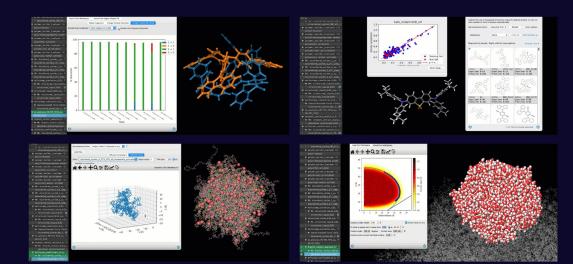
8

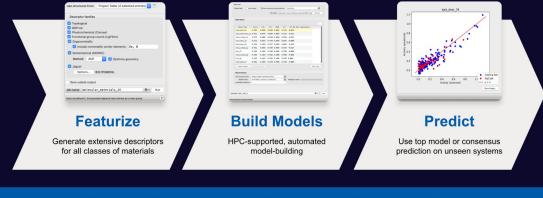
materials with optimal


property profile

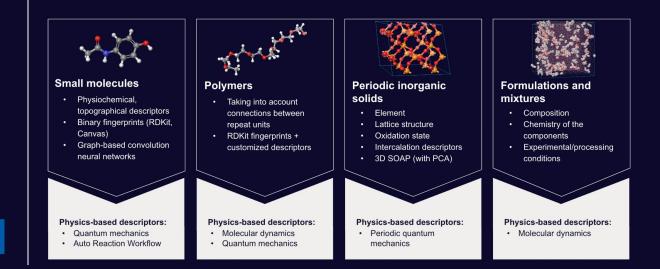

Modeling impact on materials design



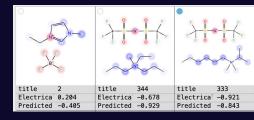

Physics-based modeling

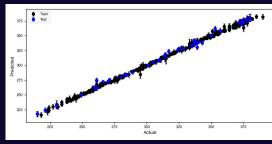


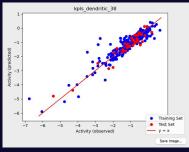
Time



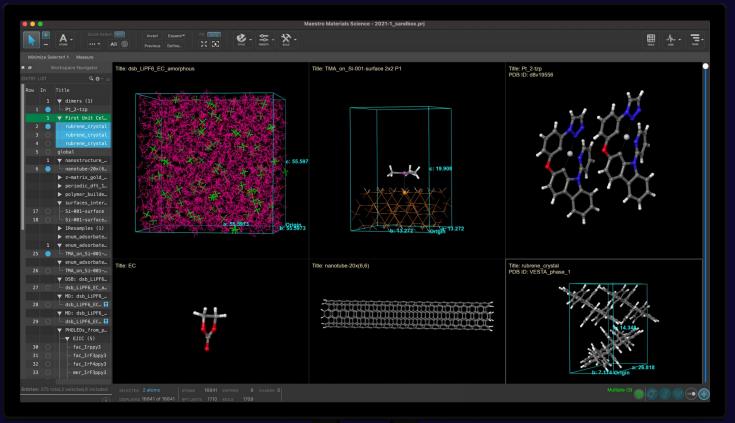
Machine learning




Capabilities for: small molecules, organometallics, polymers, periodic inorganics, and formulations



Model Code v Score S.D. R^2 RMSE Q^2 Q^2 MW (Null kpls_dendritic_38 0.8590 0.3468 0.8584 0.3451 0.9036 -0.0071 kpls linear 38 0.8319 0.3664 0.8415 0.3770 0.8849 -0.0071 0.4017 0.8216 0.3384 0.8400 0.0146 kpls_linear_40 0.8277 kpls dendritic 40 0.8159 0.4099 0.8142 0.3912 0.7862 0.0146 kols linear 23 0.4215 0.8030 0.4084 0.7662 0.0185 0.8039 kpls_dendritic_23 0.7941 0.4329 0.7921 0.4143 0.7592 0.0185 kpls_radial_21 0.7907 0.4468 0.7836 0.3907 0.7218 -0.0164 kpls radial 22 0.4213 0.8015 0.4255 0.7829 0.0192 0.7833 kpls_radial_34 0.7805 0.4554 0.7710 0.3895 0.7850 0.0250 0.7793 0.4492 0.7753 0.4219 0.7535 -0.0130 knls linear 5



User-friendly GUI and comprehensive API

MS Maestro

Python API

Comprehensive API for programmatic interaction with Schrödinger software

~ export SCHRODINGER=/opt/schrodinger/suites2024-1

 \$SCHRODINGER/run periodic_dft_gui_dir/qe2mae.py -h usage: \$SCHRODINGER/run periodic_dft_gui_dir/qe2mae.py [-h] [-last_only] input_file

Converter script from Quantum ESPRESSO output file to Maestro structure file. Copyright Schrodinger, LLC. All rights reserved.

positional arguments:

input_file Quantum ESPRESSO output file (.out, .save.qegz).

optional arguments:

-h, -help Show this help message and exit.

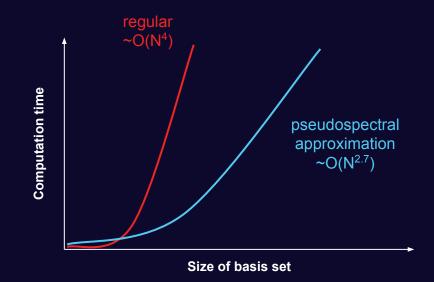
-last_only Save only last structure. (default: False)

+ ~

....

Products

Jaguar


A high-performance quantum chemistry software program leveraging the pseudospectral approximation method

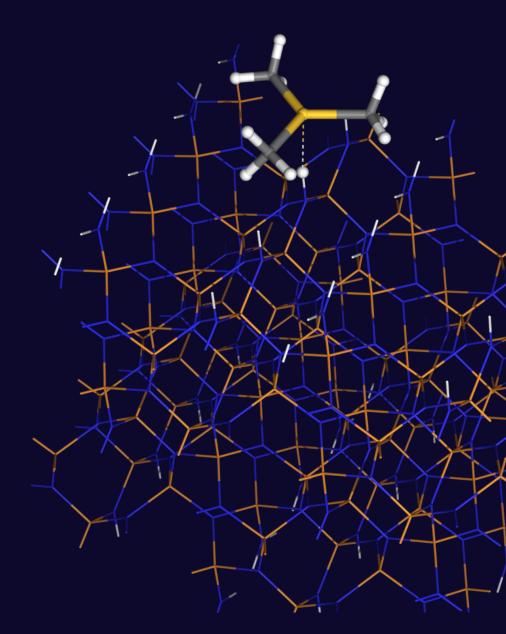
Key capabilities:

- Extensive coverage of functionals, basis sets, and properties, see <u>Jaguar Data Sheet</u>
- Geometry optimization, transition state search, thermochemical properties, implicit solvation, spectra prediction, and more
- Automated solutions: pKa prediction, conformationally averaged VCD and ECD spectroscopy, tautomer generation and ranking, heat of formation, etc.
- Publication-quality 3D surfaces: molecular orbitals, electrostatic potential projected on isodensity, spin density, non-covalent interactions, etc.

Speed-up (hybrid DFT):

- Single points: ~ 2-4x
- Geometry optimizations: ~ 2-3x
- Second derivatives: ~ 2x
- TD-DFT: ~ 10x

Visit webpage


Quantum ESPRESSO

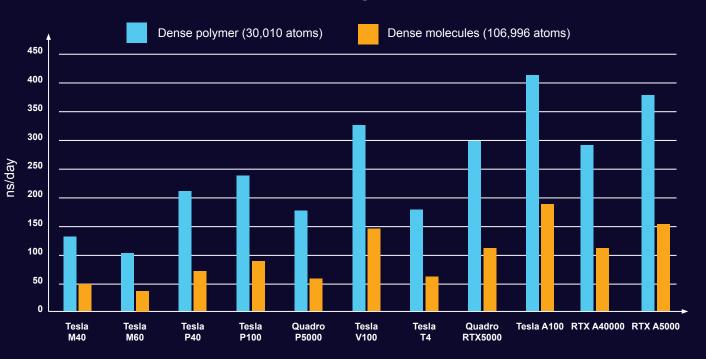
Automated solutions, including builders and analysis tools for performing periodic DFT calculations

Key capabilities:

- Predictions for bulk, surface, and interface properties
- Support Ultrasoft (US), Norm-Conserving (NC) and Projector Augmented Wave (PAW) pseudopotentials
- Perform structural optimization and ab initio molecular dynamics
- Simulate transition states and minimum energy paths with nudged elastic band (NEB) method
- Model linear response properties within Density Functional Perturbation theory (DFPT)
- Predict spectroscopic properties

→ <u>Visit webpage</u>

Desmond

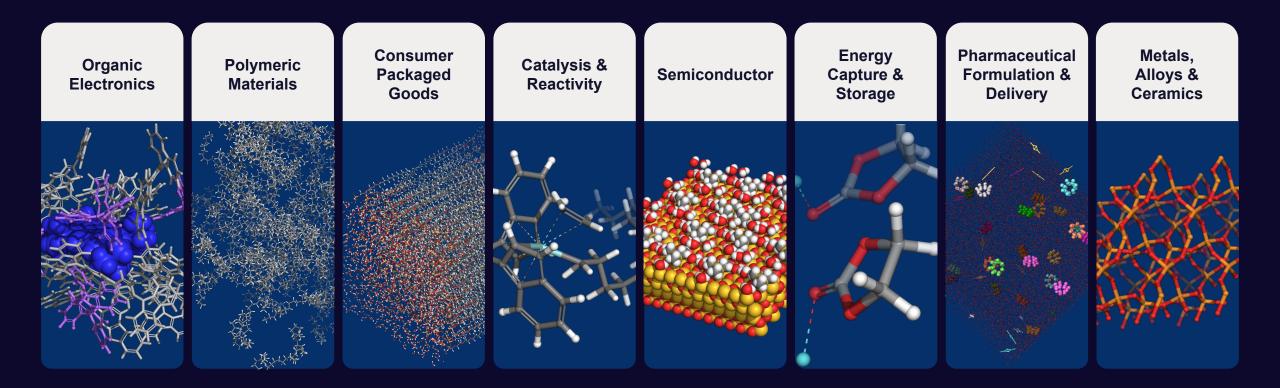

High-performance molecular dynamics (MD) engine providing high scalability, throughput, and scientific accuracy

Key capabilities:

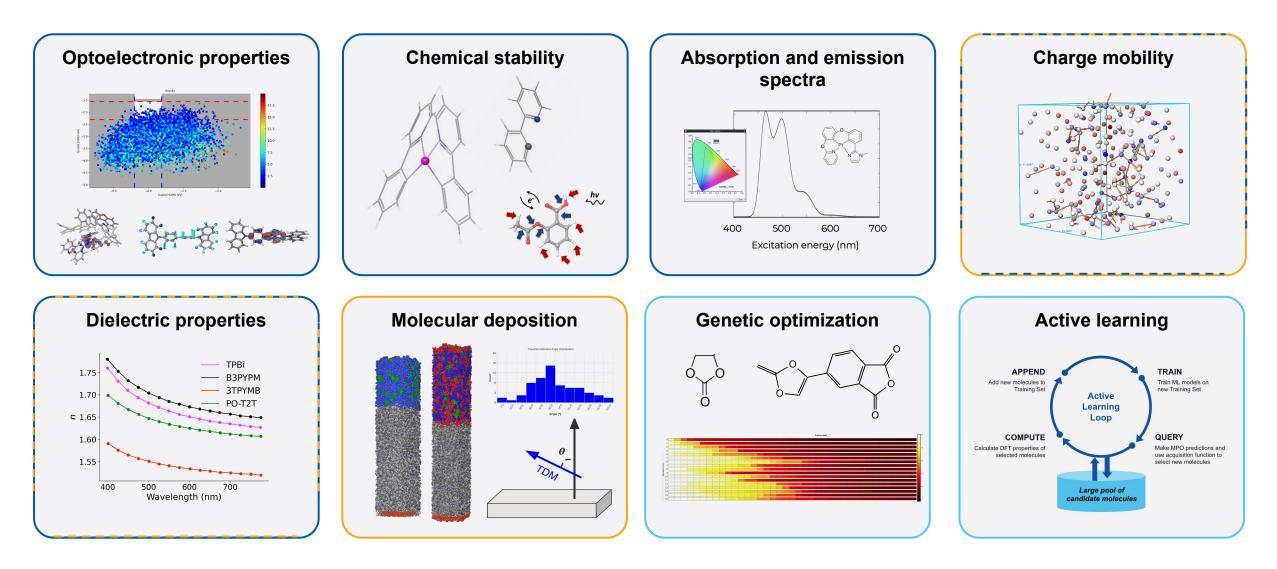
- GPU
- OPLS and coarse-grained force fields
- Enhanced sampling including replica exchange
- Extensively validated for materials science applications

Visit webpage

Desmond Molecular Dynamics Performance

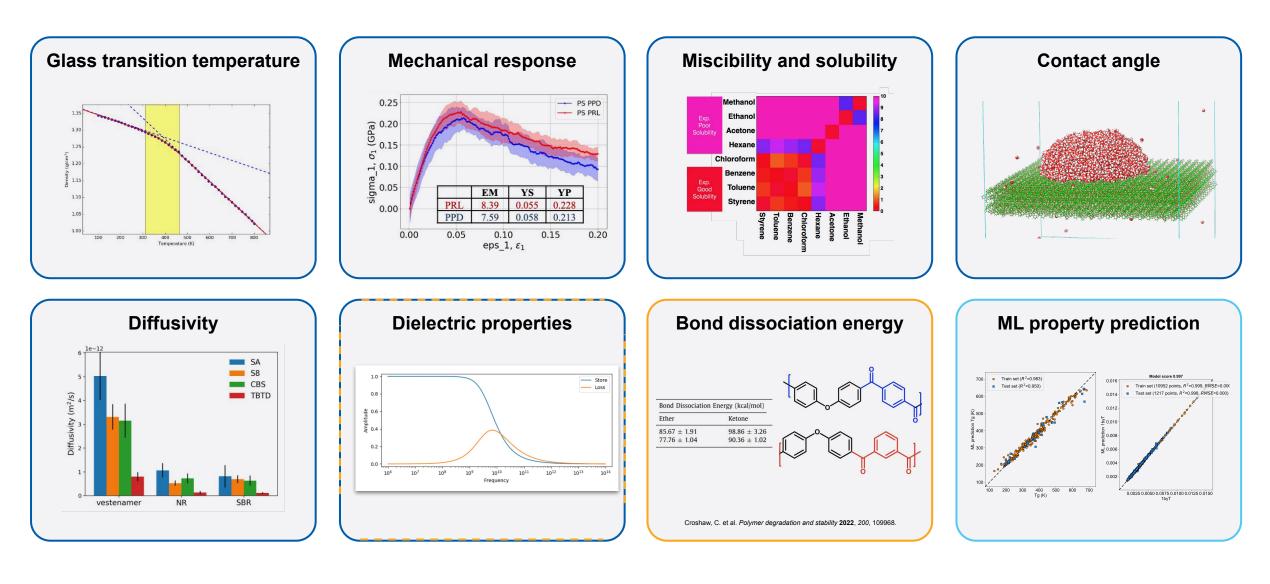


Application Areas and Select Capabilities


Solutions for all applications

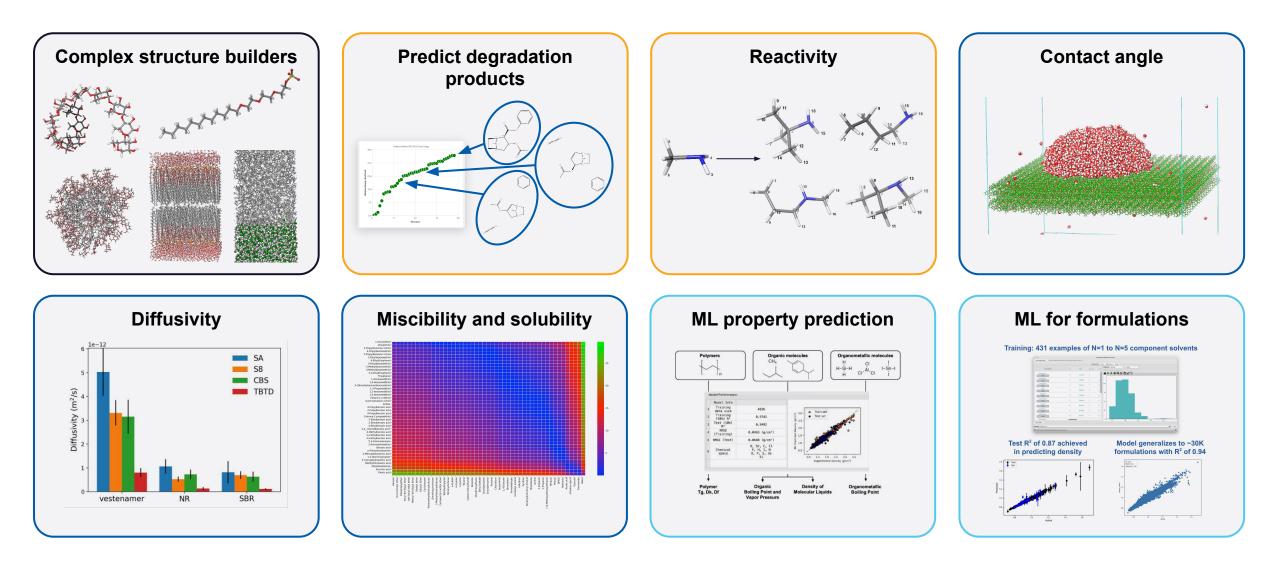
Tailored solutions that reduce cost, reduce risk, shorten timelines

Organic electronics: select capabilities

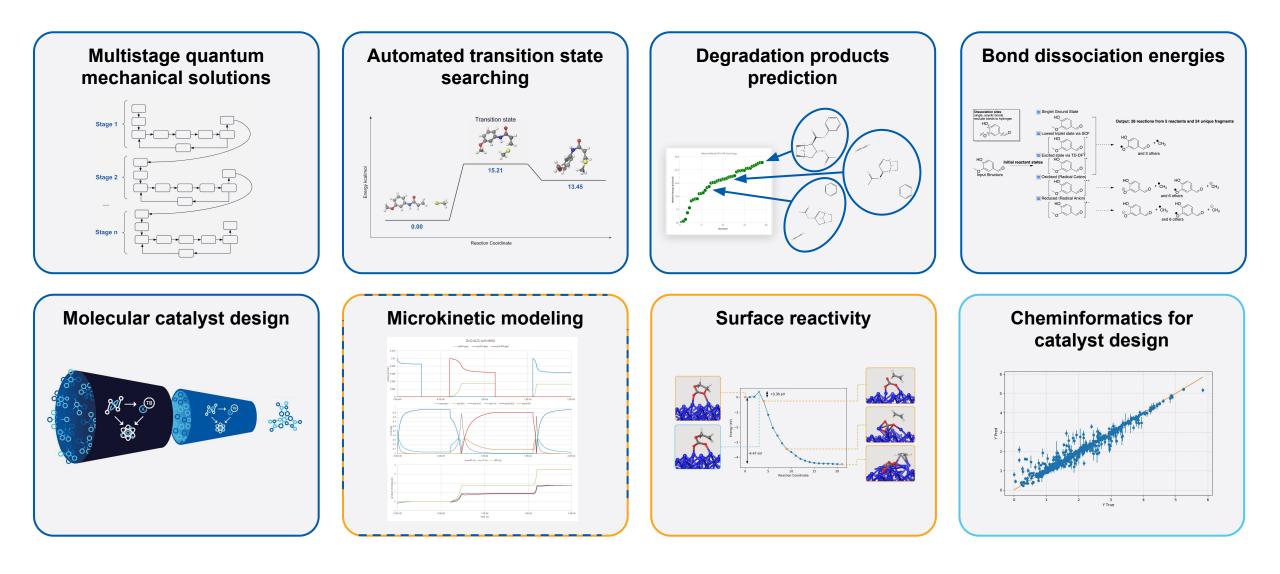

Thin films

Molecules

Machine learning

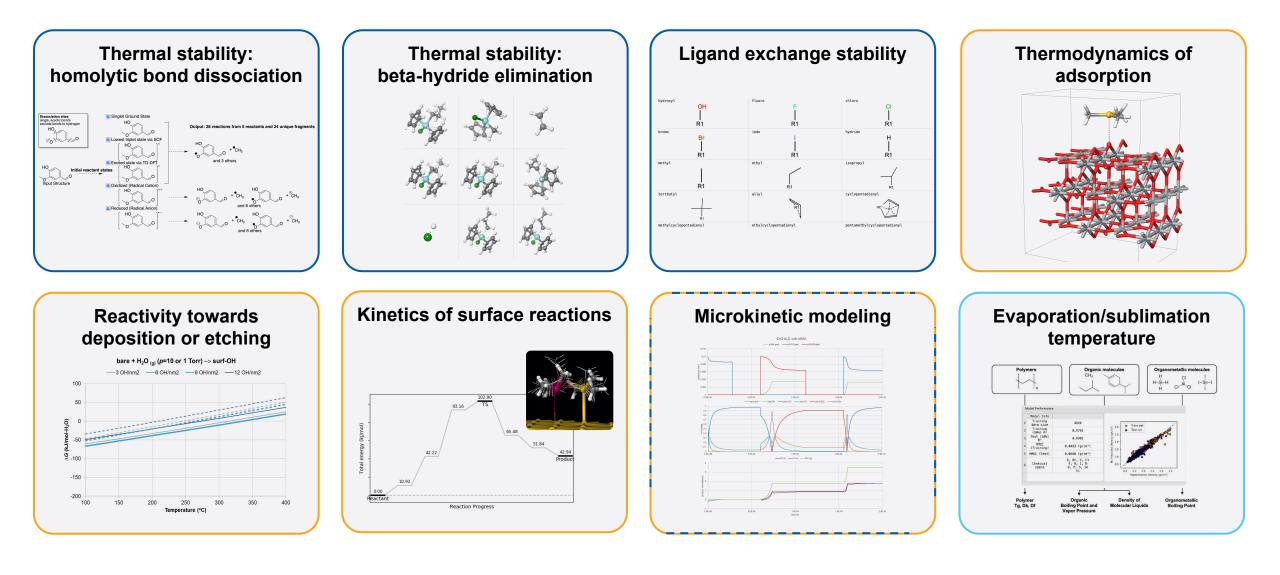


Polymeric materials: select capabilities



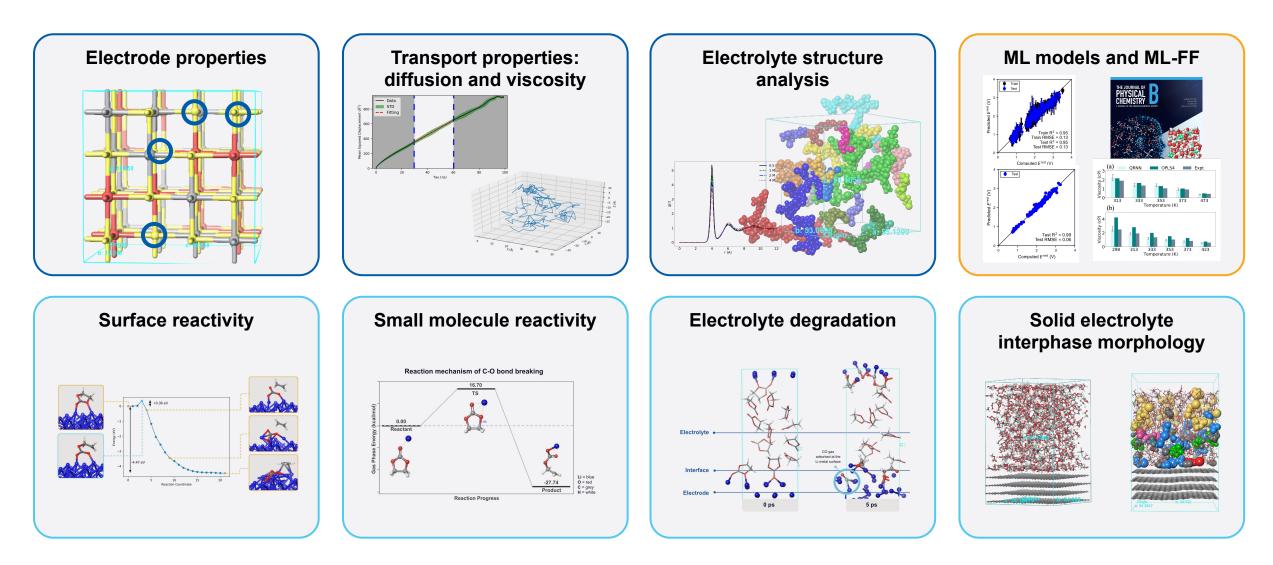
Consumer packaged goods: select capabilities

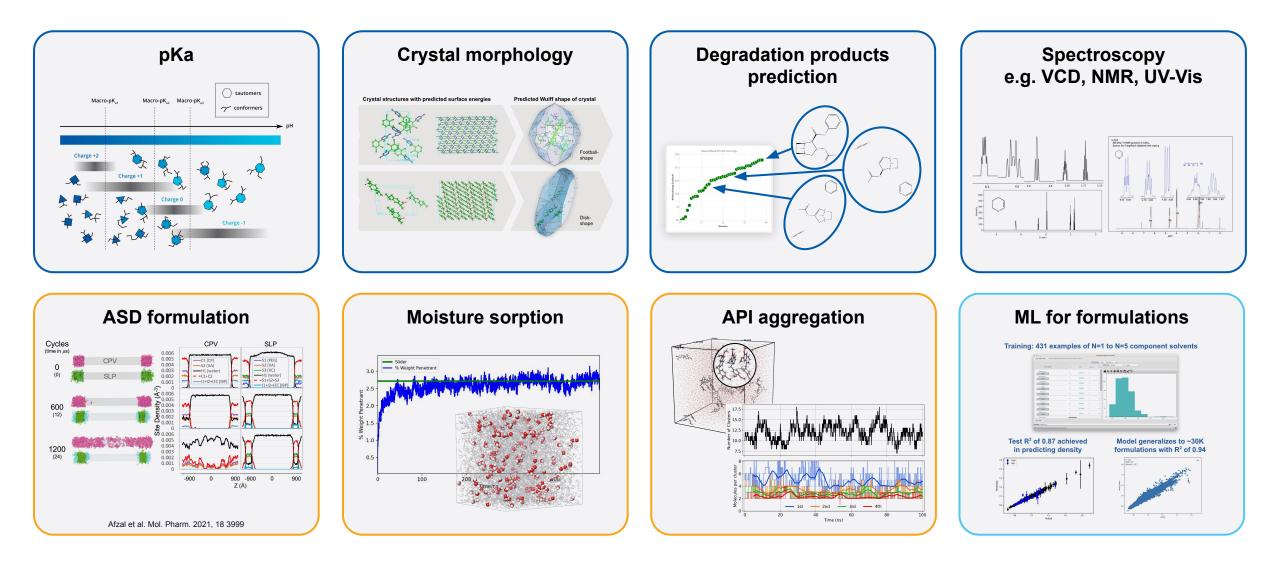
Catalysis and reactivity: select capabilities


Molecules

Solid-state

Machine learning


Semiconductor: select capabilities


Periodic

Energy capture and storage: select capabilities

Pharmaceutical formulations: select capabilities

Capabilities: organic electronics

Efficiency & Performance

- Light emission / absorption / colors
 - Spectrum peaks and shapes (FWHM)
 - Multispectra analysis from individual RGB characteristics
- Molecular electronic properties
 - Representative orbital energies (HOMO/LUMO)
 - Transition dipole moment
 - Excited state energy level with oscillator strengths
 - Energy transfer from optically excited states
- Charge transport and recombination
 - Charge reorganization energy
 - Charge carrier mobility
 - Excited-state charge transfer and localization characteristics
- Outcoupling efficiency
 - Dielectric constant/loss
 - Molecular film orientation

Stability & Lifetime

- Bond dissociation energy for the ground and the excited states
- Chemical reaction analysis for potential degradation pathways

Processing & Film Morphology

- Thermophysical properties
 - Glass transition temperature
 - Coefficient of thermal expansion
- □ Process-oriented film morphology prediction
 - Molecular deposition
 - Solvent evaporation
 - Solvent uptake
- Mechanical properties
 - Elastic constants
 - Stress-strain curve
- Solubility/miscibility
- Thermal conductivity

Materials Design & Discovery

- Chemical enumeration and library generation
 - Digitization for chemistry and data
 - R-group / ligand enumeration
- Machine learning for electronic materials
 - Automated machine learning algorithms for model building and validation
 - Machine learning for materials formulations
 - Active learning for materials screening
- Creation and management of new generative models for designing novel electronic materials (services)

Enterprise Informatics

- Enterprise platform for OLED materials R&D
 - Management of materials information
 - Automated molecular simulations
 - Cheminformatics and machine learning
 - Management of OLED device data with links to materials information

Capabilities: thin film processing

Precursor Design & Development

- Structure and properties of precursor compounds
 - Metal-ligand bonding
 - Molecular volume
 - Surface coverage / steric demand of ligands
- Precursor chemistry
 - Customizable, built-in library of hundreds of ligands for ALD/CVD processes including monodentate, bidentate (κ^2), and haptic (η^5) ligands
 - Automated & flexible enumeration over ligands to generate libraries of candidate precursors
 - High-throughput quantum mechanical calculations for virtual screening of candidate precursors
 - Reactivity with respect to deposition or etch of target film (oxide, nitride, metal etc)
- □ Thermal stability assessment
 - Homolytic bond dissociation
 - β-hydride elimination
 - Synthetic stability with respect to ligand exchange
- Machine learning prediction for physical properties of organometallic compounds
 - Volatility (evaporation or sublimation temperature at a given pressure)

Surface Chemistry Analysis

- Thermodynamics of molecular adsorption onto surfaces
 - Automated generation of adsorption geometries
 - High-throughput predictions of adsorption free energies
- Surface reactivity
 - □ Thermochemistry of deposition & etching processes
 - Temperature windows or crossover temperatures for competing surface processing
 - Chemical reactivity of plasma components at surface
 - Reaction kinetics via activation energies
- Time evolution of surface coverages during ALD cycles via microkinetic modeling
 - Saturation time
 - Growth per cycle
 - Sticking coefficient

Data Management & Collaboration

- Enterprise solution for managing database and molecular ideation
 - U Web-based, chemically-aware informatics platform
 - Management of both experimental and computed materials data
 - Support for collaboration across geographies and departments
- Built-in machine learning and cheminformatics solutions for property predictions and smart search/screening

Capabilities: battery materials

Electrode Materials

- System builders (crystals, slabs and interfaces, series of point defects)
- Surface energy
- Equilibrium lattice constants
- Density of states and band gaps
- Mechanical properties (elastic constants / bulk moduli)
- Dielectric constants
- Ion migration in bulk structures with nudged elastic band (NEB) simulations
- Intercalation potential
- Defect formation energies with corrections for charged defects
- Equation of state predictions
- Effective screening medium

Electrolyte Materials and Formulations

- Model builders (molecules, elemental and functional group enumeration, polymers)
- Machine learning cheminformatics for single- and multi-component systems
- Machine learning force fields for electrolyte systems (services)
- Molecular properties
 - Orbital energies and redox potentials
 - Atomic charges and polarizability
 - Density profile
- Liquid or polymer electrolyte properties
 - Viscosity
 - Dielectric constants and loss
 - Glass transition temperature (Tg) and coefficient of thermal expansion
 - Diffusivity and ionic conductivity
 - Solubility parameters
 - □ Mechanical properties (e.g. stress-strain curves)
 - Clustering and aggregation
 - Electrolyte-ion coordination
 - Radial distribution function (RDF) and structure factor

Electrolyte Reactivity and Stability

- Degradation
 - Bond dissociation energies
 - Prediction of decomposition products
- Reaction mechanism elucidation (molecules)
 - Energy landscape for reactants, intermediates, and products
 - Automated transition state search

Solid Electrolyte Interphase

- Solid-electrolyte interphase simulator for constructing SEI models
 - Reaction-template-based molecular dynamics simulation with multiple reaction components
- Ab initio MD (AIMD) for the study of early stage SEI formation mechanisms
- Reaction mechanism elucidation (surfaces)
 - Energy landscape for reactants, intermediates, and products
 - □ Transition state search (NEB)

Capabilities: petrochemical

Heterogeneous Catalysis, Surface Chemistry

- Builders and enumeration (crystals, slabs, adsorbates)
- Reaction mechanism elucidation
 - Thermodynamics and kinetics: reactants, intermediates, and products
 - Automated transition state search
- Microkinetic modeling
- Machine learning cheminformatics

Energy Capture and Storage

- Battery materials
 - Electrode materials
 - Electrolyte materials
 - Solid-electrolyte interphase
- Electrolyte stability and reactivity towards electrode materials
- Materials for carbon capture
- Hydrogen and methanol storage and delivery

Homogeneous Catalysis, Reactivity, Degradation

- Builders and enumeration
- DFT, xTB, ML potentials
- Conformational search
- Degradation
 - Bond dissociation energies
 - Prediction of decomposition products
- Reaction mechanism elucidation
 - Multistage quantum mechanics: reactants, intermediates, and products
 - Automated transition state search (AutoTS)
- Automated physics-based and ML cheminformatics-based catalyst design:
 - Selectivity (chemo-, regio-, enantioselectivity)
 - Activity (TOF)

Spectroscopy / Characterization

🗅 pKa

- UCD, IR/Raman/UV-Vis
- NMR (solution-state, solid-state)

Polymers, Additives, Rubbers, Lubricants, Emulsions

- Builders and enumeration (polymers, surfactants, micelles, multicomponent mixtures, interfaces)
- Bio-based polymers (e.g. PET)
- All-atom molecular dynamics simulation
- Coarse-grained simulation
- Phase behavior
- Compatibility and dispersion
- Properties of polymers/soft matter/mixtures:
 - Diffusivity and viscosity
 - Miscibility and solubility
 - Glass transition temperature
 - Coefficient of thermal expansion
 - Dielectric properties
 - Stress-strain curves
 - Clustering/aggregation
 - Interaction energies
- Thermoset modeling (cross-linking)
- Catalysts for polymerization reactions
- Machine learning cheminformatics for polymers and formulations

Capabilities: pharmaceutical formulation and delivery

Characterization

- 📮 pKa
- Powder X-ray diffraction (XRPD)
- Crystal morphology
- Density of crystalline or amorphous phases

Spectroscopy

- VCD
- Solution-state NMR
- Solid-state NMR
- IR/Raman
- UV-Vis

Catalysis, Reactivity, Degradation

- API degradation
 - Bond dissociation energies
 - Prediction of decomposition products
- Reaction mechanism profile
 - Thermodynamics (Δ G, Δ H) and kinetics (E_a): reactants, products, intermediates, transition states
 - Automated transition state search
- Automated catalyst design
- Machine learning models for catalysis
- Conformational search

Crystal Structure Prediction (CSP)

- CSP for de-risking (services)
- CSP for scaffold design (services)
- CSP software (coming soon)

Formulations and Delivery

- Machine learning models for formulations
- System builders (mixtures, polymers, surfactants, lipids, etc.)
- Solubility of amorphous and crystalline API
- API aggregation
- Glass transition temperature
- Mechanical properties
- Wettability (contact angle)
- Separation during solvent removal (evaporation)
- API encapsulation in cyclodextrin, etc.
- Excipient selection and ASD formulation
 - API solubility and LogP in excipient
 - Solubility parameters
 - API excipient mixing enthalpy
 - ASD separation and dissolution
 - Protein/biologics excipients selection
- Hygroscopicity (moisture sorption) in
 - Amorphous solid dispersions
 - APIs
 - Tablet coatings
- Solution viscosity
- Protein/polymer interactions
- Lipid nanoparticles
- mRNA formulations (services)
- Liposomes

Capabilities: aerospace and defense

Polymers, Composites and Formulations

- Builders and enumeration (homopolymers, block copolymers, semicrystalline polymers, ladder polymers, carbohydrates/biopolymers, multicomponent mixtures, interfaces, formulations)
- Methods
 - All-atom molecular dynamics simulation (OPLS force field)
 - Coarse-grained simulation
 - Martini force field (database parameters)
 - Dissipative particle dynamics (DPD), automated particulation and force field parameterization
- Physics-based prediction of:
 - Glass transition temperature (Tg)
 - Coefficient of thermal expansion (CTE)
 - Mechanical response (e.g. stress-strain, elastic constants)
 - Penetrant loading (water, solvent; function of relative humidity and/or temperature)
 - Evaporation
 - Diffusivity and migration
 - Conformational statistics
 - Dielectric properties (e.g. refractive index, Abbe number, static dielectric constant, complex permittivity)
 - Wettability (contact angle)
 - Interaction energy at interface
 - Clustering/aggregation/additive binding
 - Viscosity
 - Thermal conductivity
 - Surface tension
 - Miscibility (solubility parameters), solubility of additives/contaminants
 - Enzyme degradation

Reactivity and Catalysis

- Cross-linking
 - Realistic curing simulations
 - Prediction of gel point
- Polymer and molecular degradation
 - Bond dissociation energies
 - Prediction of decomposition products
- High energy materials
- Reaction mechanism elucidation
 - Energy landscape for reactants, intermediates, and products
 - Automated transition state search
- Automated catalyst design
- Polymerization reaction barriers

Machine Learning

- Descriptor generation
 - Molecular descriptors
 - Polymer descriptors
 - Formulation descriptors (composition)
- Pre-trained ML models (e.g. dielectric constant, glass transition temperature)
- Automated ML model building

Solid-State Materials

- Builders and enumeration
 - Crystals (pure inorganics, alloys, additives/dopants)
 - Slabs and interfaces
- Physics-based prediction of:
 - Surface energy
 - Equilibrium lattice constants
 - Density of states and band gaps
 - Mechanical properties (elastic constants / bulk moduli)
 - Dielectric constants
 - Ion migration in bulk structures with nudged elastic band (NEB) simulations
 - Intercalation potential
 - Defect formation energies with corrections for charged defects
 - Equation of state predictions
 - Effective screening medium
- Microkinetic modeling
- Reaction mechanism elucidation
 - Energy landscapes
 - Automated transition state search

Capabilities: plastics, elastomers and polymer-based materials

Physics-based Property Estimation

- Builders and enumeration (homopolymers, block copolymers, semicrystalline polymers, ladder polymers, carbohydrates/biopolymers, multicomponent mixtures, interfaces, formulations)
- Methods
 - All-atom molecular dynamics simulation (OPLS force field)
 - Coarse-grained simulation
 - Martini force field (database parameters)
 - Dissipative particle dynamics (DPD), automated particulation and force field parameterization
- Physics-based prediction of:
 - Glass transition temperature (Tg)
 - Coefficient of thermal expansion (CTE)
 - Mechanical response (e.g. stress-strain, elastic constants)
 - Penetrant loading (water, solvent; function of relative humidity and/or temperature)
 - Evaporation
 - Diffusivity and migration
 - Conformational statistics
 - Dielectric properties (e.g. refractive index, Abbe number, static dielectric constant, complex permittivity)
 - Wettability (contact angle)
 - Interaction energy at interface
 - Clustering/aggregation/additive binding
 - Viscosity
 - Thermal conductivity
 - Surface tension
 - Miscibility (solubility parameters), solubility of additives/contaminants (e.g. FEP Solubility)
 - Enzyme degradation

Catalysis, Reactivity and Degradation

- Cross-linking
 - Realistic curing simulations
 - Prediction of gel point
- Polymer degradation
 - Bond dissociation energies
 - Prediction of decomposition products
- Reaction mechanism elucidation
 - Energy landscape for reactants, intermediates, and products
 - Automated transition state search
- Automated catalyst design
- Polymerization reaction barriers

Spectroscopy and Characterization

- Solution-state NMR
- IR/Raman
- UV-Vis
- 📮 рКа
- Powder X-ray diffraction (XRPD)
- Density of crystalline or amorphous phases

Machine Learning

- Descriptor generation
 - Molecular descriptors
 - Polymer descriptors (topological fingerprints and structural descriptors)
 - Formulation descriptors (composition)
- Pre-trained ML models (e.g. dielectric constant, dissipation loss, glass transition temperature)
- Automated ML model building for molecules, polymers and formulations

Capabilities: consumer packaged goods

Physics-based Property Estimation

- Builders and enumeration (homopolymers, block copolymers, ladder polymers, carbohydrates, multicomponent mixtures, interfaces, formulations)
- Methods
 - All-atom molecular dynamics simulation (OPLS force field)
 - Coarse-grained simulation
 - Martini force field (database parameters)
 - Dissipative particle dynamics (DPD), automated particulation and force field parameterization
- Physics-based prediction of:
 - Glass transition temperature (Tg)
 - Coefficient of thermal expansion (CTE)
 - Mechanical response (e.g. stress-strain, elastic constants)
 - Penetrant loading (water, solvent; function of relative humidity and/or temperature)
 - Evaporation
 - Diffusivity
 - Migration of contaminants
 - Conformational statistics
 - Wettability (contact angle)
 - Clustering/aggregation
 - Viscosity
 - Thermal conductivity
 - Surface tension
 - Miscibility (solubility parameters), solubility (e.g. FEP Solubility)
 - Electroporation
 - Antimicrobial activity
 - Protein-based biomaterial stability

Catalysis, Reactivity and Degradation

- Cross-linking
 - Realistic curing simulations
 - Prediction of gel point
- Polymer degradation
 - Bond dissociation energies
 - Prediction of decomposition products
- Reaction mechanism elucidation
 - Energy landscape for reactants, intermediates, and products
 - Automated transition state search
- Automated catalyst design

Machine Learning

- Descriptor generation
 - Molecular descriptors
 - Polymer descriptors (topological fingerprints and structural descriptors)
 - □ Formulation descriptors (composition)
- Pre-trained ML models (e.g. glass transition temperature)
- Automated ML model building for molecules, polymers and formulations

Spectroscopy and

Solution-state NMR

Crystal morphology

Powder X-ray diffraction (XRPD)

Density of crystalline or amorphous

Solid-state NMR

IR/Raman

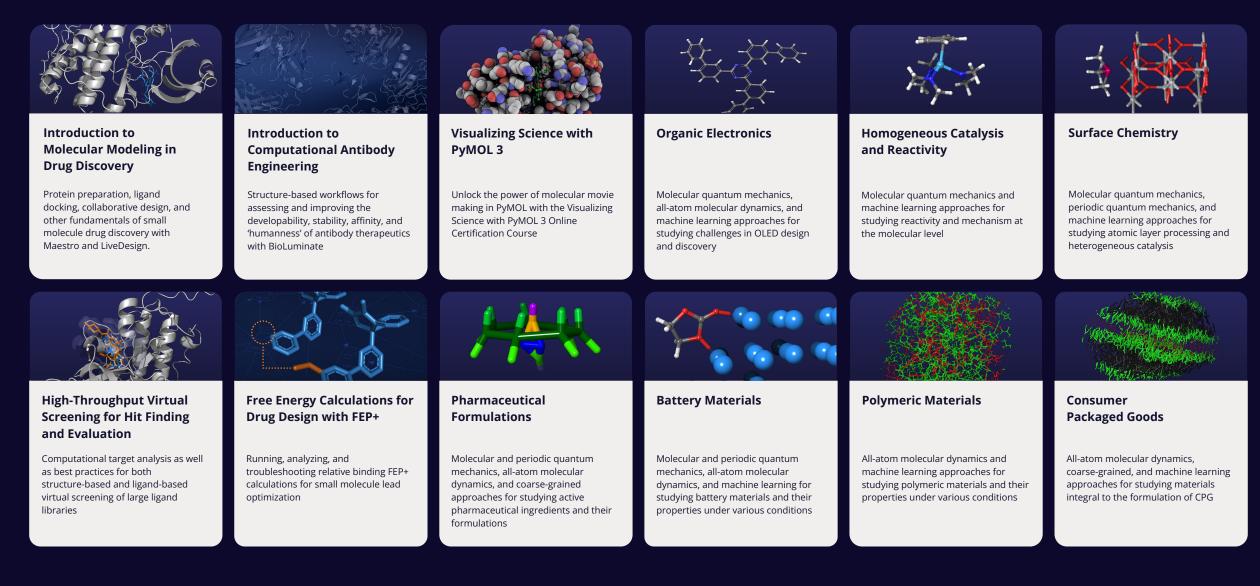
UV-Vis

phases

pKa

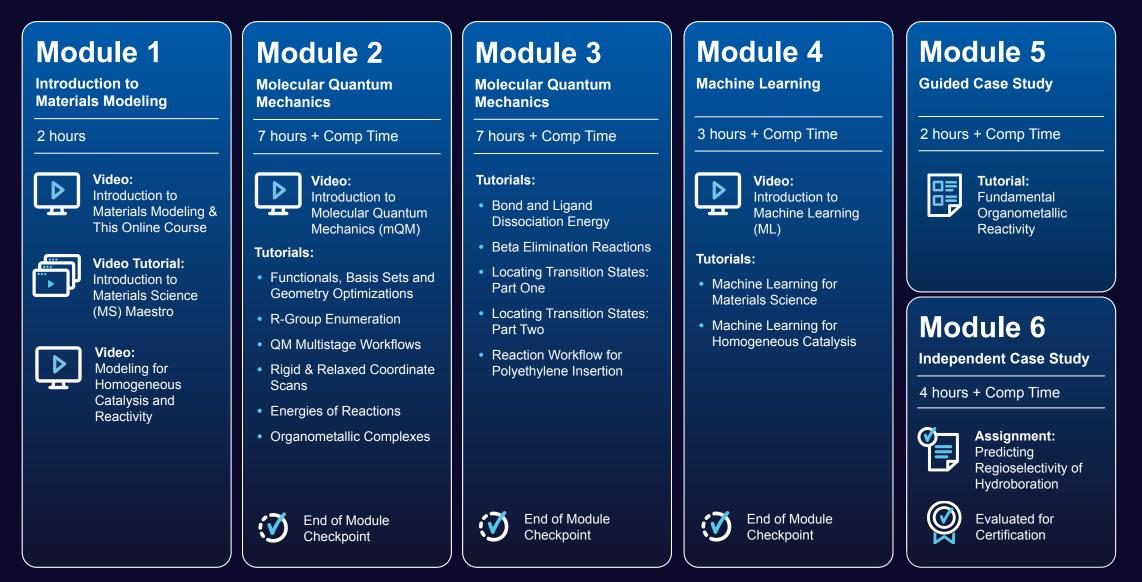
Characterization

VCD


Education

Schrödinger Online Courses

Full suite of online certification courses


schrodinger.com/materials-science/learn/education/courses/ schrodinger.com/life-science/learn/education/courses/

Organic Electronics

Module 1 Introduction to Materials Modeling	Module 2 Molecular Quantum Mechanics	Module 3 All-Atom Molecular Dynamics	Module 4 Machine Learning	Module 5 Guided Case Study
2 hours Video: Introduction to Materials Modeling & This Online Course Video Tutorial: Introduction to	7 hours + Comp Time Video: Introduction to Molecular Quantum Mechanics (mQM) Tutorials: • Functionals, Basis	6 hours + Comp Time Video: Introduction to Molecular Dynamics (MD) Tutorials: Disordered System Building	3 hours + Comp Time Video: Introduction to Machine Learning (ML) Tutorials: Machine Learning for	3 hours + Comp Time Tutorial: Modeling Intermolecular Interactions in the Emissive Layer
Materials Science (MS) Maestro Video: Modeling for Organic Electronics	 Punctionals, Basis Sets and Geometry Optimizations R-Group Enumeration QM Multistage Workflows Optoelectronics Organometallic Complexes Bond and Ligand Dissociation Energy Band Shape Excited State Analysis 	 Disordered System Building and MD Multistage Workflows Molecular Deposition Kinetic Monte Carlo Charge Mobility Molecular Dielectric Properties 	 Materials Science Optoelectronics Active Learning 	Module 6Independent Case Study4 hours + Comp TimeImage: State of the state of
	End of Module Checkpoint	End of Module Checkpoint	End of Module Checkpoint	Evaluated for Certification

Homogeneous Catalysis and Reactivity

Surface Chemistry

Module 1 Introduction to Materials Modeling 2 hours	Module 2 Molecular & Periodic Quantum Mechanics 6 hours + Comp Time	Module 3 Molecular & Periodic Quantum Mechanics 5 hours + Comp Time	Module 4 Machine Learning 3 hours + Comp Time	Module 5 Guided Case Study 4 hours + Comp Time
Video: Introduction to Materials Modeling & This Online CourseVideo Tutorial: Introduction to Materials Science (MS) MaestroVideo: Nodeling for Surface Chemistry	 Video: Introduction to Quantum Mechanics (mQM & pQM) Tutorials: Functionals, Basis Sets and Geometry Optimizations QM Multistage Workflows Energies of Reactions Building and Manipulating Crystals Properties of Bulk Crystals 	 Tutorials: Modeling Surfaces Activation Energies for Reactivity in Solids and on Surfaces R-Group Enumeration Organometallic Complexes Beta Elimination Reactions Bond and Ligand Dissociation 	 Video: Introduction to Machine Learning (ML) Machine Learning for Materials Science Periodic Descriptors for Inorganic Solids 	Tutorials: Paladium Precursor Design Heterogeneous Carbon Dioxide Reduction Modependent Case Study 4 hours + Comp Time Massignment:
	End of Module Checkpoint	End of Module Checkpoint	End of Module Checkpoint	Assignment: Adsorption of Formaldehyde onto Palladium Evaluated for Certification

Battery Materials

Module 1 Introduction to Materials Modeling 2 hours	Module 2 Molecular & Periodic Quantum Mechanics 7 hours + Comp Time	Module 3 All-Atom Molecular Dynamics 6 hours + Comp Time	Module 4 Machine Learning 3 hours + Comp Time	Module 5 Guided Case Study 3 hours + Comp Time
Video: Introduction to Materials Modeling & This Online Course Video Tutorial: Introduction to	Video: Introduction to Molecular and Periodic Quantum Mechanics (mQM & pQM)	Video: Introduction to Molecular Dynamics (MD) Tutorials: • Disordered System Building	Video: Introduction to Machine Learning (ML) Tutorials: • Machine Learning for	Tutorial: EC Decomposition on a Li (001) Surface
Materials Science (MS) Maestro Video: Introduction to Modeling for Batteries	 Quantum Mechanical Workflows and Properties: Part 1 Quantum Mechanical Workflows and Properties: Part 2 Building Bulk Crystals and Calculating Properties 	 and MD Multistage Workflows Building, Equilibrating and Analyzing Polymers Diffusion Polymer Electrolyte Analysis Liquid Electrolyte Properties: Part 1 	 Materials Science Machine Learning for Ionic Conductivity 	Module 6 Independent Case Study 4 hours + Comp Time
	 Calculating Intercalation and Voltage Curves Lithium Ion Migration Barrier (NEB) End of Module Checkpoint 	Liquid Electrolyte Properties: Part 2 End of Module Checkpoint	End of Module Checkpoint	Assignment: Modifying Battery Electrolyte Components Evaluated for Certification

Pharmaceutical Formulations

Module 1 Introduction to Materials Modeling 2 hours	Module 2 All-Atom Molecular Dynamics 6 hours + Comp Time	Module 3 Coarse-Grained Simulation 5 hours + Comp Time	Module 4 Molecular & Periodic Quantum Mechanics 5 hours + Comp Time	Module 5 Guided Case Study 2 hours + Comp Time
Video:Introduction to Materials Modeling & This Online CourseVideo Tutorial: Introduction to Materials Science	Video: Introduction to Molecular Dynamics (MD) Tutorials: • Disordered System Building and MD Multistage Workflows	Video: Introduction to Coarse-Graining (CG) Tutorials: Ibuprofen Cyclodextrin Inclusion Complexes with	Video: Introduction to Quantum Mechanics (mQM & pQM) Tutorials: • Functionals, Basis Sets and Geometry Optimizations	Tutorial: Nanoemulsions with Automated DPD Parameterization
(MS) Maestro Video: Modeling for Pharmaceutical Formulations	 Molecular Dynamics Simulations for API (active pharmaceutical ingredient) Miscibility Glass Transition Temperature for APIs Hygroscopicity Crystal Morphology 	 the Martini Coarse-Grained Force Field Ibuprofen Copovidone Drug Excipient Model with Dissipative Particle Dynamics (DPD) 	 QM Multistage Workflows Bond and Ligand Dissociation Energy pKa Building and Manipulating Crystals Properties of Bulk Molecular Crystals 	Module 6 Independent Case Study 4 hours + Comp Time Massignment: API Property Prediction
	End of Module Checkpoint	End of Module Checkpoint	End of Module Checkpoint	Evaluated for Certification

41

Polymeric Materials

Module 1 Introduction to Materials Modeling	Module 2 Molecular Dynamics	Module 3 Molecular Dynamics	Module 4 Machine Learning	Module 5 Guided Case Study
2 hours Video: Introduction to Materials Modeling & This Online Course Video Tutorial: Introduction to Materials Science (MS) Maestro	 7 hours + Comp Time Video: Introduction to Molecular Dynamics (MD) Tutorials: Disordered System Building and MD Multistage Workflows Building, Equilibrating and 	 6 hours + Comp Time Tutorials: Polymer Property Prediction Penetrant Loading Diffusion Polymer Electrolyte Analysis Dielectric Properties 	3 hours + Comp Time Video: Introduction to Machine Learning (ML) Tutorials: Machine Learning for Materials Science Polymer Descriptors for Machine Learning	2 hours + Comp Time Tutorial: Epoxy Formulations Module 6
Video: Modeling for Polymeric Materials	 Analyzing Polymers Building Polymer-Polymer Interfaces Crosslinking Polymers End of Module Checkpoint 	End of Module Checkpoint	End of Module Checkpoint	Independent Case Study 4 hours + Comp Time Image: Assignment: Polymer-Mediated Graphene Dispersion Image: Dispersion

Consumer Packaged Goods

Module 1 Introduction to Materials Modeling	Module 2 Molecular Dynamics	Module 3 Molecular Dynamics & Coarse-Grained Simulation	Module 4 Machine Learning	Module 5 Guided Case Study
2 hours Video: Introduction to Materials Modeling & This Online Course Video Tutorial: Introduction to Materials Science (MS) Maestro Video: Modeling for Consumer Packaged Goods	 7 hours + Comp Time Video: Introduction to Molecular Dynamics (MD) Tutorials: Disordered System Building and MD Multistage Workflows Building, Equilibrating and Analyzing Polymers Building a Carbohydrate Polymer Building Polymer-Polymer Interfaces Crosslinking Polymers End of Module Checkpoint 	 6 hours + Comp Time Tutorials: Cluster Analysis Surfactant Tilt and Electrostatic Potential Viscosity Starch Moisture Uptake and Plasticization Video: Introduction to Coarse-Graining Tutorials: Building a Coarse-Grained Surfactant Model Wideo: End of Module Checkpoint 	3 hours + Comp Time Video: Introduction to Machine Learning (ML) Tutorials: • Machine Learning for Materials Science • Polymer Descriptors for Machine Learning • Machine Learning for Sweetness	2 hours + Comp Time Tutorial: Coarse-Grained Modeling of SLES Modeling of SLES

Teaching with Schrödinger

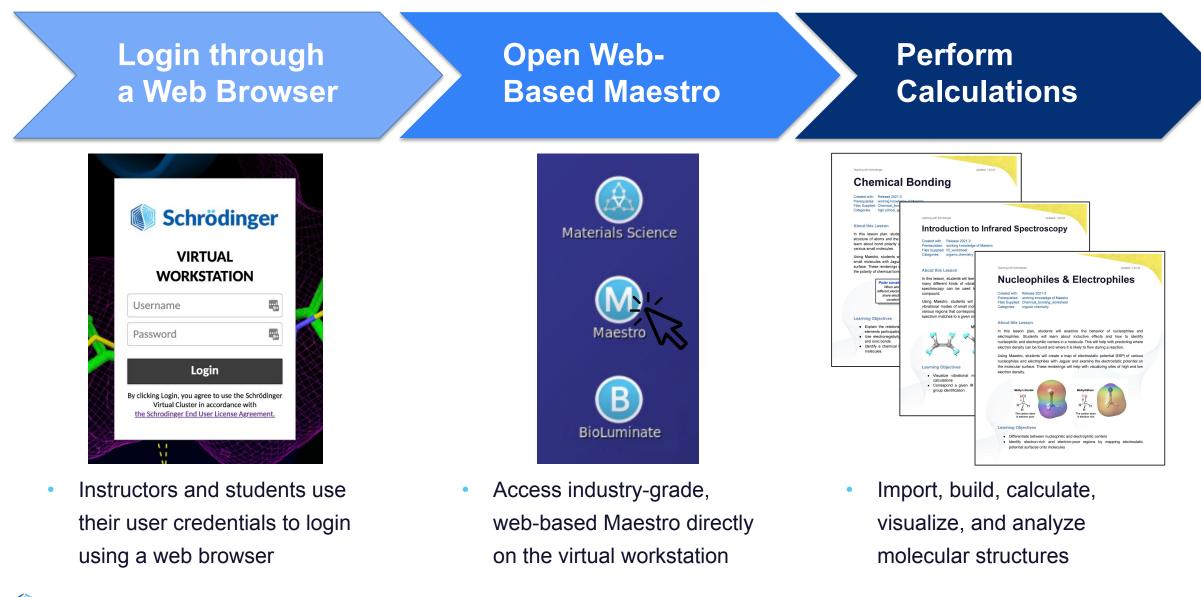
Teaching with Schrödinger

Schrödinger's suite of software is now easily accessible to students and educators.

About

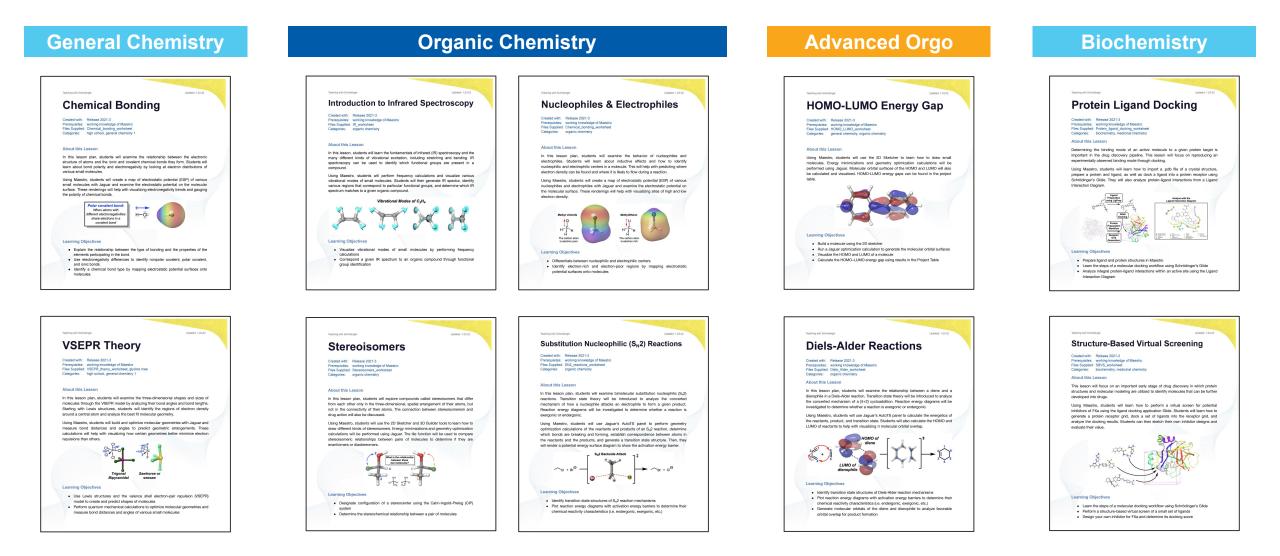
- Build, calculate, and analyze structures for teaching purposes using web-based Maestro (Small Molecule Drug Discovery, Biologics Discovery, & Materials Science)
- No need for students or instructors to download software—access is through a virtual desktop environment via a web browser

Resources


- Educational materials in a variety of chemistry and biology subjects at the undergraduate and high school levels (i.e. General Chemistry, Organic Chemistry, Medicinal Chemistry, etc.)
- Readily available lab assignments, lesson plans, and worksheets with computational exercises for students and instructors to use

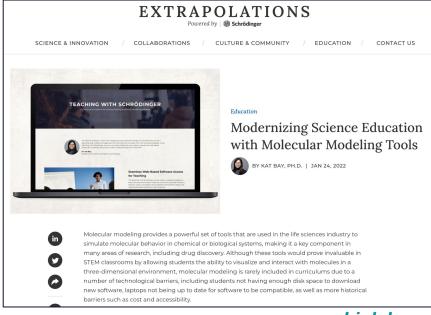
Support

- No computational experience? No problem! We will provide support for students and instructors on how to use the Maestro interface and perform basic functions
- Included with a purchase are inclass demos with a Schrödinger Education Team member



Teaching with Schrödinger Program: How Does It Work?

Schrödinger


Teaching with Schrödinger Pre-Configured Lessons

Industry-Leading Molecular Modeling in the Classroom

Modernizing Science Education with Molecular Modeling Tools Blog Post

Link here

"There is a huge boom now in companies looking for computational chemists, particularly for drug discovery. The challenge is that many people don't necessarily get exposed to it in school, and I think we are missing out on students who would really like this kind of experience." - Prof. Severin Schneebeli

Associate Professor of Chemistry at University of Vermont

See how UCLA students use Maestro in their courses

	emistry				Site Search	
HOME ABOUT US	GRADUATE U	UNDERGRADUATE	FACULTY & RESEARCH	HEALTH & SAFETY	SEMINARS	GIVING
Home » Enabling student acces	s to industry-grade (computational software				
MORE NEWS						
2021 American	Dec 8, 2021	1				
Association for the		Houk group al	ums Katherine (Kat) Bay and F	lung Pham team up to all	w LICLA student	s to run
Advancement of			remotely as part of Chem 30A			
Science Fellow (AAAS)	9	1				
Jan 26, 2022	and the second	A member o	f the Education Team at Se	chrödinger, Dr. Katheri	ine Bay collabo	orated with
			am and the undergraduate			
			and Reactivity) and 30B (C		eactivity, Synt	hesis, and
Approaching the		Spectroscop	y) classes in the Fall quar	ter of 2021.		
fundamentals of 2D semiconductor diodes:	The stude	nts were part of a b	eta test for the Teaching w	ith Schrödinger virtual	cluster where	they ran
excitons, why can't we		The students were part of a beta test for the <u>Teaching with Schrödinger</u> virtual cluster where they ran calculations that integrate with their organic chemistry course curriculum and the feedback so far has				
meet in the middle?		essive. Students log	gged into a virtual workstat	tion through a web-bro	wser where	
meet in the middle?	Schröding	er's Maestro is alrea	ady installed. The benefits	to using a virtual clust	er are that stu	dents and
		don't have to down	load any new software to	their lantons and can i	un calculation	s
Jan 26, 2022	instructors		nous any new sentiture to	and aptops and barri		-

"**Teaching with Schrödinger has undoubtedly prepared me for my future studies.** Providing students with industry-standard software expertise early on will make us better candidates for the real world."

- Samantha Lee

Bioinformatics Undergraduate Student at New York City College of Technolog

Contact: Patrick Heasman patrick.heasman@schrodinger.com