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(@) Schrodinger
" 30+ years of innovation

Over 850 employees worldwide; >40% Ph.D.

Pioneering @ &
D i g ita I @ >50% of employees dedicated to R&D
O

~1,785 customers worldwide

Chemistry

Pipeline of 25+ collaborative and proprietary programs
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Digital chemistry strategy built on three pillars
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How to work with Schrodinger

Research

Lab
License

e Use industry-grade tools
for academic research

e Ala carte products to
meet the specific needs
of the research group

e Flexible licensing

\_

Department
License

e Use industry-grade tools
for academic research

e Ala carte products to
meet the specific needs
of the department

e Flexible licensing

/
&=
5"

Site
License

e Enable both research
and education at scale
across an entire
institution

e All standard products
included

e \Wide-scale access to
education materials

N

Education

Teaching with
Schrodinger

e Incorporate
computational chemistry
and biology tools in the
classroom

e Pre-made lesson plans
and hands-on exercises

e Web-based access. No
hardware or software
needed

Online Certification
Courses

e Hands-on, asynchronous
courses ranging from
beginner to advanced

e Course material prepared
by molecular modeling
experts

e Web-based access. No
hardware or software
needed

p
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Introduction to
Schrodinger
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MISSION

To improve human health and
quality of life by transforming the
way new medicines and materials
are discovered through advanced
computational methods

(@) Schrédinger Not for public distribution 6



30+ year history of innovation

Co-founders Richard Friesner and
Bill Goddard launch Schrodinger

Release of Glide Release of WaterMap

Co-founding of Nimbus
Therapeutics

First software sale Release of Prime

Gilead acquisition from
Nimbus ACC program

Signed collaboration

T Release of FEP+ with Agios

Launch Materials

Release of LiveDesign : :
Science Business

Takeda acquisition of
Nimbus TYK2 Program

Initial Public Offering Eonix Collaboration

Bristol Myers Squibb
Collaboration

First Wholly-owned Schrodinger
Clinical Trial

Launch of Cryo-EM Copernic Collaboration

@E} SChrﬁdil‘lger Not for public distribution 7



A predict-first approach

« Manual materials design
Traditional | . Candidate materials synthesized and tested over weeks

materials Candidate material
. Materials selection or purchase andigdate materials
deS|gn Property may not meet

testin _
J requirements

Candidate synthesis and purification

* 100Ks of materials tested computationally

Schrodinger
* Candidate materials identified digitally over days

digital
chemistry el orooert N Best performing candidate
ode roperty nalysis : : .
platform building predictions and screen DEVCES W) (2 1L

property profile

Not for public distribution 8
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Modeling impact on materials design

In Silico

Design Cycle
Property

Prediction

-

Assessment of
Performance

Synthesis and
Characterization Discovery
\\ Materlal
Idea
Enumeration
& Virtual
Screening

@j Schrodinger

Lifespan
- Optimize
i S'"co. @ — Process —@
Reformulation
Parameters

» Development —» Manufacturing —— Deployment ——» Service
Root

@ — Cause —@ Enhanced

Analysis Recyclability

Not for public distribution
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Physics-based modeling

Build

Construct and design
complex systems

Simulate

Access all methods in a
single platform

Analyze

View and interpret outputs to
guide decision-making

3D builder Molecules & Nanostructures Gsle Surfaces &
rm_ Complexes & Nanoparticles Interfaces
c - o \//'v‘ A > "!~_‘I_I_'.'I!J'I! LEL
,.Q. \/'l \] ' :
Ny YoM Rl

|||]
L

Disordered
Structures

2D sketcher

Structured Complex

S Liquids Blends

Size

Atomistic
Molecular Mechanics
Molecular Dynamics

Electronic
Periodic DFT
Electronic T
Molecular DFT AR
Py
'AL‘, kS

Mesoscale
Coarse Graining

Amplified by
0,
4

Machine
Learning

KA
KN

Enumeration /
Library generation

(@j Schrodinger

Time
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#aer +QEBLY
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Machine learning

Predict

Use top model or consensus
prediction on unseen systems

Build Models

HPC-supported, automated
model-building

Featurize

Generate extensive descriptors
for all classes of materials

Capabilities for: small molecules, organometallics, polymers, periodic inorganics, and formulations

Small molecules

+  Physiochemical,
topographical descriptors

« Binary fingerprints (RDKit,
Canvas)

* Graph-based convolution
neural networks

\/

Physics-based descriptors:
* Quantum mechanics

« Auto Reaction Workflow

>, ,.J\,,t‘. I

s S
4
Polymers

« Taking into account
connections between
repeat units

+ RDKit fingerprints +
customized descriptors

\/

Physics-based descriptors:
* Molecular dynamics

* Quantum mechanics

- :‘)_;{ 3
| A A

. Sre'iyg
x i ¢ b
Periodic inorganic
solids

+ Element

+ Lattice structure

» Oxidation state

» Intercalation descriptors

+ 3D SOAP (with PCA)

Physics-based descriptors:
« Periodic quantum
mechanics

Formulations and
mixtures

« Composition

+ Chemistry of the
components

«  Experimental/processing
conditions

Physics-based descriptors:
* Molecular dynamics

Conti Y
Informative SNHICLE

descriptors

Feature Selection o Categorical Y

Fingerprints
Structure +
Property to fit
Descriptors
+
Test Fingerprints v,
Single Model M, A
or .
Consensus ZM, *

Structures

Train/Test Splits

Learning Methods

Report ? RP, Bayes, RP
RP, Bayes, Bayes
Rank, Sort, Cap
MLR, KPLS,
[/
MLR, KPLS,

@ Schrodinger

Model Code v | Score
kpls_dendritic_38 0.8590
kpls_linear_38  0.8319
kpls_linear 40 0.8277
kpls_dendritic 40 0.8159
kpls_linear_23  0.8039
kpls_dendritic_23 0.7941
kpls_radial 21 0.7907
kpls_radial 22 0.7833
kpls_radial 34  0.7805

kpls_linear_5 0.7793

S.D.

0.3468

0.3664

0.4017

0.4099

0.4215

0.4329

0.4468

0.4213

0.4554

0.4492

RY2 RUSE 2 Q°2 MW (Null
0.8584 0.3451 0.9036 -0.0071
0.8415 0.3770  0.8849 -0.0071
0.8216 0.3384 0.8400 0.0146
0.8142 0.3912 0.7862 0.0146
0.8030 0.4084 0.7662 0.0185
0.7921 0.4143 0.7592 0.0185
0.7836 0.3907 0.7218 -0.0164
0.8015 0.4255 0.7829 0.0192
0.7710 0.3895 0.7850 0.0250

0.7753 0.4219  0.7535 -0.0130

Predicted -0.405

£<
NN

title 2 title 344
Electrica’ 0.204 Electrica’ -0.678

Not for public distribution

Predicted -0.929

-4 -3
Activity (observed)

title
|Electrica’
| Predicted

kpls_dendritic_38
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User-friendly GUlI and comprehensive API

MS Maestro
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Python API

-

Comprehensive API for
programmatic interaction with
Schrodinger software

=+ ~ export SCHRODINGER=/opt/schrodinger/suites2024-1

+ ~ $SCHRODINGER/run periodic_dft_gui_dir/qeZmae.py -h
usage: $SCHRODINGER/run periodic_dft_gui_dir/qeZmae.py
[-h] [-last_only] input_file

Converter script from Quantum ESPRESSO output file to Maestro structure
file. Copyright Schrodinger, LLC. All rights reserved.

positional arguments:
input_file Quantum ESPRESSO output file (.out, .save.gegz).

optional arguments:
-h, -help Show this help message and exit.
-last_only Save only last structure. (default: False)

- o~

\_
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Jaguar

A high-performance quantum chemistry software program leveraging the pseudospectral approximation method

Key capabilities:

Extensive coverage of functionals, basis sets, and
properties, see Jaguar Data Sheet

Geometry optimization, transition state search,
thermochemical properties, implicit solvation, spectra
prediction, and more

Automated solutions: pKa prediction, conformationally
averaged VCD and ECD spectroscopy, tautomer
generation and ranking, heat of formation, etc.

Publication-quality 3D surfaces: molecular orbitals,
electrostatic potential projected on isodensity, spin density,
non-covalent interactions, etc.

[1J L] . . . .
v) Plot adapted: https://wwwz2.Ibl.gov/Science-Articles/Archive/CSD-quantum-chemistry.html
@E SChrOdlnger Latest Jaguar Review: J. Chem. Phys. 161, 052502 (2024)

Computation time

Speed-up (hybrid DFT):

Single points: ~ 2-4x

Geometry optimizations: ~ 2-3x
Second derivatives: ~ 2x
TD-DFT: ~ 10x

pseudospectral
approximation
~O(N2'7)

Size of basis set

Not for public distribution
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https://www.schrodinger.com/platform/products/ms-jaguar/
https://www.schrodinger.com/platform/products/ms-jaguar/

Quantum ESPRESSO

Automated solutions, including builders and analysis tools for
performing periodic DFT calculations

Key capabilities:

Predictions for bulk, surface, and interface properties

Support Ultrasoft (US), Norm-Conserving (NC) and
Projector Augmented Wave (PAW) pseudopotentials

Perform structural optimization and ab initio molecular
dynamics

Simulate transition states and minimum energy paths with
nudged elastic band (NEB) method

Model linear response properties within Density Functional
Perturbation theory (DFPT)

Predict spectroscopic properties

@) Schrodinger

Not for public distribution ‘ 15


https://www.schrodinger.com/platform/products/ms-quantum-espresso-gui/

Desmond

High-performance molecular dynamics (MD) engine providing high scalability,
throughput, and scientific accuracy

Key capabilities: Desmond Molecular Dynamics Performance
° GPU N . Dense polymer (30,010 atoms) . Dense molecules (106,996 atoms)
450
* OPLS and coarse-grained force fields 400

350

* Enhanced sampling including replica

exchange
- Extensively validated for materials 200
science applications 150 II Il II

Tesla Tesla Tesla Tesla Quadro Tesla Tesla Quadro Tesla A100 RTX A40000 RTX A5000
M40 M60 P40 P100 P5000 V100 RTX5000

ns/day

(ij SChrﬁdil‘lger Not for public distribution 16


https://www.schrodinger.com/platform/products/ms-desmond/

Application Areas and
Select Capabilities

(@ Schrodinger Not for public distribution 17



Solutions for all applications

Consumer Energy Pharmaceutical
Semiconductor Capture & Formulation &
Storage Delivery

Organic Polymeric
Electronics Materials

Catalysis &

FEELERr Reactivity

Goods

Tailored solutions that reduce cost, reduce risk, shorten timelines

Metals,
Alloys &
Ceramics

(@3) Schrﬁdinger Not for public distribution
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Organic electronics: select capabilities

~

Optoelectronic properties

Dielectric properties

1.7/
1.70
< 1.65

1.60

1.55

400 500 600 700
Wavelength (nm)

N R

-

K(& Schrodinger

-

Chemical stability

\//\\
j.," N o
/A R
/ N2 | Y |
| "' " 1 ‘
L I

Absorption and emission
spectra

400 500 600 700
Excitation energy (nm)

D Molecules

Thin films

Genetic optimization

Machine learning

|
|
I
I
|
|
I
I
|
|
I
I
APPEND TRAIN
Add new molecules to Train ML models on
Training Set B new Training Set
Active
Learning
Loop
COMPUTE QUERY
Calculate DFT properties of Make MPO predictions and
selected molecules use acquisition function to
select new molecules
Large pool of
candidate molecules
Not for public distribution 19



Polymeric materials: select capabilities

\
Glass transition temperature

135 ‘\
130 \\
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E
3 120
Z
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-]
110
105
100 e m " "
100 200 30 400 500 €00 00 800
Temperature (K}
Diffusivity A
le-12
6
. SA
- . S8
. CBS
. TBTD

Diffusivity (m?/s)
w %

N}

vestenamer NR SBR

Mechanical response

0.25 —— PS PPD

Miscibility and solubility

10
Methanol

Exp. Ethanol
Poor
ey Acetone

Hexane
Chloroform

Benzene

Exp.
Good Toluene
Solubility

Styrene

© = m w & @ 0 N ® ©

suszuag
wiojololyd
suexay
auojedy
Joueylg
|oueylapy

Bond dissociation energy

Ether Ketone

o
Bond Dissociation Energy (kcal/mol) \P©\o
[}

85.67 + 1.91
77.76 + 1.04

5905 EM | Ys | YP
? 0.00 PRL | 839 [ 0.055 | 0.228
PPD | 7.59 | 0.058 | 0.213
0.00 0.05 0.10 015 0.20
eps_1, &;
Dielectric properties
1.0
08
é‘u.ﬁ
Eo.a
0.2
0.0
108 107 108 10° 1010 1011 1012 1013 101

Frequency

Schrodinger

D Molecular dynamics

Quantum mechanics

98.86 + 3.26 o
9036 + 1.02 I©/
o o

Croshaw, C. et al. Polymer degradation and stability 2022, 200, 109968.

Machine learning

Contact angle

ML prediction Tg (K)

ML property prediction

700{ o Train set (R2=0.983) a 0BG Modsliscorsi0.007}
= Testset (R2=0.950) ,;. o Train set (10952 points, R?=0.999, RMSE=0.00(
%
o % 0014] 8 Testset (1217 points, R?=0.998, RMSE=0.000)
0.012
500
s
20010
400 §
5 0.008
B
300 S
o
<0006
200 0.004
L, 0.002
1001 #

L0 0.0025 0.0050 0.0075 0.0100 0.01250.0150
9 (K) byT
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Consumer packaged goods: select capabilities

Complex structure builders

Diffusivity

6 le-12
- SA
s = S8
= CBS
. == TBTD

Diffusivity (m?/s)

vestenamer NR SBR

Predict degradation
products

(@ Schrodinger

Reactivity

Quantum mechanics

} — }
Polymer Organic Density of Organometallic
Tg, Dk, Df Boiling Point and Molecular Liquids Boiling Point
Vapor Pressure
O Molecular dynamics Machine learning

(

Contact angle

ML for formulations

Training: 431 examples of N=1 to N=5 component solvents

AerEazELS

Test R? of 0.87 achieved Model generalizes to ~30K
in predicting density formulations with R? of 0.94

Not for public distribution
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Catalysis and reactivity: select capabilities

Multistage quantum
mechanical solutions

Stage 1 {
Stage 2 {
Stagen{ ? %

~

Molecular catalyst design

(\(& Schrodinger

Automated transition state
searching

Transition state

Energy kealimol

Reaction Coordinate

Degradation products
prediction

Bond dissociation energies

Singlet Ground §
HO
Output: 28
-0
ja SCF
- HO,
o] [ oo
© o
TO-DFT cit
0}

5 ¥
Oxidized (Radical Cation)
HO,

L HO - HO__ a
~ I l -0 g -0 BN Lo J
o
@ Reduced (Radical Anion ) and 6 others
HO_ . HO HO .
SN Wl o (I o+
N -0 Al y y
o A0 o o
aaaaaaaa s

Surface reactivity

N

B e b
\ ~
TR

Solid-state Machine learning

Cheminformatics for
catalyst design

vvvvv

Not for public distribution
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Semiconductor: select capabilities

/

Thermal stability:
homolytic bond dissociation

@

Reactivity towards
deposition or etching

bare + H,0 () (p=10 or 1 Torr) —> surf-OH
30HNM2 ——60H/MM2 ——9OH/NM2 ——12OH/nNm2

AG (kJImol-H,0)

100 150 200 250 300 350 400
Temperature (°C)

Schrodinger

C Thermal stability: A
beta-hydride elimination
o~ 24
47 % ol 4
Hy By P
> ’1
° # ﬁ#
- J

Kinetics of surface reactions

Total energy (kj/mol)

00000

10.92

Reaction Progress

\
Ligand exchange stability
) } !
] } |
RL [

- J
- Microkinetic modeling _
: |
I I
| P F — I
I
| i |
I I
I I
I I
I I
I I
I I
I

Periodic Machine learning

Thermodynamics of
adsorption

e

Evaporation/sublimation
temperature
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Energy capture and storage: select capabilities

Electrode properties

~

- 0.36 eV
g i o
-
32
3 5
& i
.
H

aaaaaaaaaaaaaaa

K(& Schrodinger

Transport properties:
diffusion and viscosity

~

Electrolyte structure
analysis

Small molecule reactivity

Reaction mechanism of C-O bond breaking

16.70
s

Gas Phase Energy (kcalimol)

Reaction Progress

D Electrode and electrolyte properties

Q
) Y
v
¥, R
- ﬁ: LU’S _— ggk
[\; ° ? ° ‘\.ry“%

Machine learning Solid electrolyte interphase

ML models and ML-FF

Predicted E" (V)

Predicted E/7 (V)

CHEMISTRY
o 1
Computed "< (V)
‘ RNN ol
& |
] . l. i
1
. | B RN
31 333 353 373 473
Temperature (K)
(b)
z
TestR? =099 8 ,i ].
Test RMSE = 0.06
hhow
1 2 3 298 313 333 3
Computed E"# (v) Temper ®

Solid electrolyte
interphase morphology

Not for public distribution
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Pharmaceutical formulations: select capabilities

4 oKa )

O tautomers

Macro-pK,, Macro-pK,, Macro-pK,,
! ' #7~ conformers

_& - Charge +1 { ~8/\ 6 7*

<

Py |

Cycles

(time in us)

© ‘

. v
14C2 H:
a o )
< 0.006 -
0.005
600 ." ‘2‘0004
& 20003
2
- 9 Y
Qo001
2 o ~

900 0 900 -900 0 900
Z(A

Afzal et al. Mol. Pharm. 2021, 18 3999

K(& Schrodinger

Crystal morphology

Crystal structures with predicted surface energies Predicted Wulff shape of crystal

Y~
(ﬁr;(‘,}(:;?
s NN

- RN RRRRES
R

Moisture sorption

—Slider
—— % Weight Penetrant

% Weight Penetrant
b e NN
o v o n

a.
@

[ 100 200 » ol
b ‘?ne/r g 5
Ve 4 2

D Characterization

Degradation products
prediction

Formulation and delivery

-

Spectroscopy
e.g. VCD, NMR, UV-Vis

Machine learning

o

| IMJ ” ( W\‘J,H

ML for formulations

Training: 431 examples of N=1 to N=5 component solvents

Test R? of 0.87 achieved
in predicting density

Model generalizes to ~30K
formulations with R? of 0.94

e

Not for public distribution
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Capabilities: organic electronics

Stability & Lifetime

Efficiency & Performance

d Light emission / absorption / colors
[ Spectrum peaks and shapes (FWHM)
[  Multispectra analysis from individual RGB
characteristics

(d Molecular electronic properties
Representative orbital energies (HOMO/LUMO)
Transition dipole moment
Excited state energy level with oscillator
strengths
Energy transfer from optically excited states

d  Charge transport and recombination
[ Charge reorganization energy
4 Charge carrier mobility
d Excited-state charge transfer and localization
characteristics

d  Outcoupling efficiency
[ Dielectric constant/loss
[ Molecular film orientation

(@j Schrédinger

a

Bond dissociation energy for the ground and
the excited states

Chemical reaction analysis for potential
degradation pathways

Processing & Film Morphology

|

Thermophysical properties
4 Glass transition temperature
4 Coefficient of thermal expansion

Process-oriented film morphology prediction
[d  Molecular deposition

4 Solvent evaporation

4 Solvent uptake

Mechanical properties
1 Elastic constants
[ Stress-strain curve

Solubility/miscibility

Thermal conductivity

Materials Design & Discovery

O Chemical enumeration and library generation
J Digitization for chemistry and data
d R-group / ligand enumeration

d Machine learning for electronic materials
Automated machine learning algorithms for
model building and validation
Machine learning for materials formulations
Active learning for materials screening

4 Creation and management of new generative models
for designing novel electronic materials (services)

Enterprise Informatics

 Enterprise platform for OLED materials R&D
Management of materials information
Automated molecular simulations
Cheminformatics and machine learning
Management of OLED device data with links to
materials information

Not for public distribution




Capabilities: thin film processing

Precursor Design & Development

(4  Structure and properties of precursor compounds
d Metal-ligand bonding
[ Molecular volume
[ Surface coverage / steric demand of ligands

d  Precursor chemistry
Customizable, built-in library of hundreds of ligands for ALD/CVD
processes including monodentate, bidentate (k?), and haptic (n°) ligands
Automated & flexible enumeration over ligands to generate libraries of
candidate precursors
High-throughput quantum mechanical calculations for virtual screening of
candidate precursors
Reactivity with respect to deposition or etch of target film
(oxide, nitride, metal etc)

d  Thermal stability assessment
4 Homolytic bond dissociation
d  B-hydride elimination
4 Synthetic stability with respect to ligand exchange

d  Machine learning prediction for physical properties of organometallic
compounds
4 Volatility (evaporation or sublimation temperature at a given pressure)

(@j Schrédinger

Surface Chemistry Analysis

(d Thermodynamics of molecular adsorption onto surfaces
[ Automated generation of adsorption geometries
d High-throughput predictions of adsorption free energies

d Surface reactivity
Thermochemistry of deposition & etching processes
Temperature windows or crossover temperatures for competing surface processing
Chemical reactivity of plasma components at surface
Reaction kinetics via activation energies

1 Time evolution of surface coverages during ALD cycles via microkinetic modeling
d Saturation time
4 Growth per cycle
d Sticking coefficient

Data Management & Collaboration

(d Enterprise solution for managing database and molecular ideation
4  Web-based, chemically-aware informatics platform
4 Management of both experimental and computed materials data
[ Support for collaboration across geographies and departments

( Built-in machine learning and cheminformatics solutions for property predictions and
smart search/screening

Not for public distribution




Capabilities: battery materials

Electrode Materials

 System builders (crystals, slabs and
interfaces, series of point defects)

Surface energy
Equilibrium lattice constants
Density of states and band gaps

Mechanical properties (elastic constants / bulk
moduli)

Dielectric constants

lon migration in bulk structures with nudged
elastic band (NEB) simulations

Intercalation potential

Defect formation energies with corrections for
charged defects

Equation of state predictions

Effective screening medium

(@j Schrédinger

Electrolyte Materials and
Formulations

Model builders (molecules, elemental and functional
group enumeration, polymers)

Machine learning cheminformatics for single- and
multi-component systems

Machine learning force fields for electrolyte systems
(services)

Molecular properties

4 Orbital energies and redox potentials
[ Atomic charges and polarizability

d Density profile

Liquid or polymer electrolyte properties
Viscosity
Dielectric constants and loss
Glass transition temperature (Tg) and coefficient of
thermal expansion
Diffusivity and ionic conductivity
Solubility parameters
Mechanical properties (e.g. stress-strain curves)
Clustering and aggregation
Electrolyte-ion coordination
Radial distribution function (RDF) and structure factor

Electrolyte Reactivity and Stability

(d Degradation

(d Bond dissociation energies
(d  Prediction of decomposition products

(4 Reaction mechanism elucidation (molecules)

d  Energy landscape for reactants, intermediates,
and products
d Automated transition state search

Solid Electrolyte Interphase

|

W

Solid-electrolyte interphase simulator for

constructing SEI models

1 Reaction-template-based molecular dynamics
simulation with multiple reaction components

Ab initio MD (AIMD) for the study of early stage SEI
formation mechanisms

Reaction mechanism elucidation (surfaces)

[ Energy landscape for reactants, intermediates,
and products

1 Transition state search (NEB)

Not for public distribution




Capabilities: petrochemical

Heterogeneous Catalysis, Surface

Chemistry

4 Builders and enumeration (crystals, slabs,
adsorbates)

[d Reaction mechanism elucidation
 Thermodynamics and kinetics: reactants,
intermediates, and products
(d Automated transition state search

Microkinetic modeling

Machine learning cheminformatics

Energy Capture and Storage

d  Battery materials
(1 Electrode materials
d Electrolyte materials
[ Solid-electrolyte interphase

Electrolyte stability and reactivity towards electrode
materials

Materials for carbon capture

Hydrogen and methanol storage and delivery

(@j Schrédinger

Homogeneous Catalysis,
Reactivity, Degradation

Builders and enumeration
DFT, xTB, ML potentials
Conformational search

Degradation
d Bond dissociation energies
O  Prediction of decomposition products

Reaction mechanism elucidation

[ Multistage quantum mechanics: reactants,
intermediates, and products

O  Automated transition state search (AutoTS)

Automated physics-based and ML

cheminformatics-based catalyst design:

d  Selectivity (chemo-, regio-,
enantioselectivity)

[ Activity (TOF)

Spectroscopy / Characterization

d pKa
1 VCD, IR/Raman/UV-Vis
1 NMR (solution-state, solid-state)

Polymers, Additives, Rubbers,
Lubricants, Emulsions

(1 Builders and enumeration (polymers, surfactants,

micelles, multicomponent mixtures, interfaces)
Bio-based polymers (e.g. PET)

All-atom molecular dynamics simulation
Coarse-grained simulation

Phase behavior

Compatibility and dispersion

Properties of polymers/soft matter/mixtures:

Diffusivity and viscosity
Miscibility and solubility

Glass transition temperature
Coefficient of thermal expansion
Dielectric properties
Stress-strain curves
Clustering/aggregation
Interaction energies

Iy oy Iy Ny Ny Iy

Thermoset modeling (cross-linking)
Catalysts for polymerization reactions

Machine learning cheminformatics for polymers
and formulations
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Capabilities: pharmaceutical formulation and delivery

Characterization Spectroscopy Formulations and Delivery

(W

pKa VCD
Powder X-ray diffraction (XRPD) Solution-state NMR
Crystal morphology Solid-state NMR
Density of crystalline or amorphous phases IR/Raman

UV-Vis

Machine learning models for formulations
System builders (mixtures, polymers, surfactants, lipids, etc.)
Solubility of amorphous and crystalline API
API aggregation
Glass transition temperature
Mechanical properties
Wettability (contact angle)
Separation during solvent removal (evaporation)
API encapsulation in cyclodextrin, etc.
Excipient selection and ASD formulation
API solubility and LogP in excipient

Catalysis, Reactivity, Degradation

Iy Iy Ay Ny Ny Iy Iy

4 APl degradation
4 Bond dissociation energies

. " Solubility parameters
4 Prediction of decomposition products AB s mfsding ety
Reaction mechanism profile

ASD separation and dissolution
[  Thermodynamics (AG,AH) and kinetics Crystal Structure .

‘ . T Protein/biologics excipients selection
(E,): .rt.aactants, products, intermediates, Prediction (CSP) g
transition states

b ; 4 Amorphous solid dispersions
1 Automated transition state search - CSPfor de-risking (s.erwces). O APls i i
Automated catalyst design  CSP for scaffold de§|gn (services) O Tablet coatings
Machine learning models for catalysis Sl B uinmEne (Eenirg seen)

_ Solution viscosity
Conformational search . . ,
Protein/polymer interactions

Lipid nanoparticles
mMRNA formulations (services)
Liposomes

(@j Schrﬁdinger Not for public distribution




Capabilities: aerospace and defense

Polymers, Composites and Formulations

a

Builders and enumeration (homopolymers, block copolymers, semicrystalline polymers,
ladder polymers, carbohydrates/biopolymers, multicomponent mixtures, interfaces,
formulations)

Methods

a
a

All-atom molecular dynamics simulation (OPLS force field)

Coarse-grained simulation

4 Martini force field (database parameters)

4 Dissipative particle dynamics (DPD), automated particulation and force field
parameterization

Physics-based prediction of:

Glass transition temperature (Tg)

Coefficient of thermal expansion (CTE)

Mechanical response (e.g. stress-strain, elastic constants)

Penetrant loading (water, solvent; function of relative humidity and/or temperature)
Evaporation

Diffusivity and migration

Conformational statistics

Dielectric properties (e.g. refractive index, Abbe number, static dielectric constant,
complex permittivity)

Wettability (contact angle)

Interaction energy at interface

Clustering/aggregation/additive binding

Viscosity

Thermal conductivity

Surface tension

Miscibility (solubility parameters), solubility of additives/contaminants

Reactivity and Catalysis

d Cross-linking

d Realistic curing simulations
d  Prediction of gel point

Polymer and molecular degradation
d Bond dissociation energies
(d Prediction of decomposition
products

High energy materials

Reaction mechanism elucidation
0 Energy landscape for reactants,
intermediates, and products
d Automated transition state search

Automated catalyst design

Polymerization reaction barriers

Machine Learning

4 Descriptor generation

[ Molecular descriptors
4 Polymer descriptors
d Formulation descriptors (composition)

Solid-State Materials

a

Builders and enumeration

 Crystals (pure inorganics, alloys,
additives/dopants)

[ Slabs and interfaces

Physics-based prediction of:
Surface energy
Equilibrium lattice constants
Density of states and band gaps
Mechanical properties (elastic
constants / bulk moduli)
Dielectric constants
lon migration in bulk structures
with nudged elastic band (NEB)
simulations
Intercalation potential
Defect formation energies with
corrections for charged defects
Equation of state predictions
Effective screening medium

Microkinetic modeling

Reaction mechanism elucidation
d Energy landscapes

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

4 Pre-trained ML models (e.g. dielectric
constant, glass transition temperature)

STAIE CEPECET d Automated transition state search

4 Automated ML model building

(@j Schrédinger
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Capabilities: plastics, elastomers and polymer-based materials

Physics-based Property Estimation Catalysis, Reactivity and Spectroscopy and
d  Builders and enumeration (homopolymers, block copolymers, semicrystalline polymers, Degradation CharaCterization

ladder polymers, carbohydrates/biopolymers, multicomponent mixtures, interfaces, o
formulations) d Cross-linking

d Realistic curing simulations
Methods

L . . d Prediction of gel point
d  All-atom molecular dynamics simulation (OPLS force field)

O  Solution-state NMR
O
O  Coarse-grained simulation Polymer degradation d
a
O
a

IR/Raman
UV-Vis

O  Martini force field (database parameters) - Bond dissociation energies
O Dissipative particle dynamics (DPD), automated particulation and force field < Prediction of decomposition
parameterization products
Physics-based prediction of: Reaction mechanism elucidation Density of crystalline or amorphous
Glass transition temperature (Tg) - Energy landscape for reactants, phases
Coefficient of thermal expansion (CTE) intermediates, and products
Mechanical response (e.g. stress-strain, elastic constants) - Automated transition state search
Penetrant loading (water, solvent; function of relative humidity and/or temperature) Automated catalyst design
Evaporation
Diffusivity and migration
Conformational statistics
Dielectric properties (e.g. refractive index, Abbe number, static dielectric constant,
complex permittivity)
Wettability (contact angle) . .
Interaction energy at interface MaChlne Leamlng

Clustering/aggregation/additive binding . _
Viscosity 1 Descriptor generation

Thermal conductivity 0 Molecular descriptors

Surface tension [  Polymer descriptors (topological fingerprints and structural descriptors)
Miscibility (solubility parameters), solubility of additives/contaminants (e.g. FEP 1 Formulation descriptors (composition)

Solubility)

Enzyme degradation

pKa
Powder X-ray diffraction (XRPD)

Polymerization reaction barriers

4 Pre-trained ML models (e.g. dielectric constant, dissipation loss, glass transition temperature)

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

4 Automated ML model building for molecules, polymers and formulations

(@j Schrﬁdinger Not for public distribution




Capabilities: consumer packaged goods

Physics-based Property Estimation

a

a

Builders and enumeration (homopolymers, block copolymers, ladder polymers,
carbohydrates, multicomponent mixtures, interfaces, formulations)

Methods

a
a

All-atom molecular dynamics simulation (OPLS force field)

Coarse-grained simulation

4 Martini force field (database parameters)

4 Dissipative particle dynamics (DPD), automated particulation and force field
parameterization

Physics-based prediction of:

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

Glass transition temperature (Tg)

Coefficient of thermal expansion (CTE)

Mechanical response (e.g. stress-strain, elastic constants)
Penetrant loading (water, solvent; function of relative humidity and/or temperature)
Evaporation

Diffusivity

Migration of contaminants

Conformational statistics

Wettability (contact angle)

Clustering/aggregation

Viscosity

Thermal conductivity

Surface tension

Miscibility (solubility parameters), solubility (e.g. FEP Solubility)
Electroporation

Antimicrobial activity

Protein-based biomaterial stability

(@j Schrédinger

Catalysis, Reactivity and Spectroscopy and
Degradation Characterization

VCD
Solution-state NMR

d Cross-linking
d Realistic curing simulations

d Prediction of gel point

. Solid-state NMR
d Polymer degradation clasiate

d Bond dissociation energies
(d Prediction of decomposition
products

IR/Raman
UV-Vis
. . — pKa
[d Reaction mechanism elucidation
d Energy landscape for reactants,

intermediates, and products
d Automated transition state search

Powder X-ray diffraction (XRPD)
Crystal morphology

I Ry [y I I A I N [

Density of crystalline or amorphous

d Automated catalyst design phases

Machine Learning

4 Descriptor generation
4 Molecular descriptors
[  Polymer descriptors (topological fingerprints and structural descriptors)
4 Formulation descriptors (composition)

4 Pre-trained ML models (e.g. glass transition temperature)

4 Automated ML model building for molecules, polymers and formulations
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Schrodinger Online Courses
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Full suite of online certification courses

Introduction to
Molecular Modeling in
Drug Discovery

Protein preparation, ligand
docking, collaborative design, and
other fundamentals of small
molecule drug discovery with
Maestro and LiveDesign.

High-Throughput Virtual
Screening for Hit Finding
and Evaluation

Computational target analysis as well
as best practices for both
structure-based and ligand-based
virtual screening of large ligand
libraries

(@ Schrédinger

Introduction to
Computational Antibody
Engineering

Structure-based workflows for
assessing and improving the
developability, stability, affinity, and
‘humanness’ of antibody therapeutics
with BioLuminate

Free Energy Calculations for
Drug Design with FEP+

Running, analyzing, and
troubleshooting relative binding FEP+
calculations for small molecule lead
optimization

Visualizing Science with
PyMOL 3

Unlock the power of molecular movie
making in PyMOL with the Visualizing
Science with PyMOL 3 Online
Certification Course

Pharmaceutical
Formulations

Molecular and periodic quantum
mechanics, all-atom molecular
dynamics, and coarse-grained
approaches for studying active
pharmaceutical ingredients and their
formulations

Organic Electronics

Molecular quantum mechanics,
all-atom molecular dynamics, and
machine learning approaches for
studying challenges in OLED design
and discovery

Battery Materials

Molecular and periodic quantum
mechanics, all-atom molecular
dynamics, and machine learning for
studying battery materials and their
properties under various conditions

Homogeneous Catalysis
and Reactivity

Molecular quantum mechanics and
machine learning approaches for
studying reactivity and mechanism at
the molecular level

Polymeric Materials

All-atom molecular dynamics and
machine learning approaches for
studying polymeric materials and their
properties under various conditions

Surface Chemistry

Molecular quantum mechanics,
periodic quantum mechanics, and
machine learning approaches for
studying atomic layer processing and
heterogeneous catalysis

Consumer
Packaged Goods

All-atom molecular dynamics,
coarse-grained, and machine learning
approaches for studying materials
integral to the formulation of CPG
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Organic Electronics

~

/

~

C C C R
Module 1 Module 2 Module 3 Module 4 Module 5
Introduction to Molecular Quantum All-Atom Molecular Machine Learning Guided Case Study
Materials Modeling Mechanics Dynamics
2 hours 7 hours + Comp Time 6 hours + Comp Time 3 hours + Comp Time 3 hours + Comp Time

D Video: D Video: D Video: D Video: p=| Tutorial:
Introduction to Introduction to Introduction to Introduction to p=] Modeling
&L Materials Modeling & &L Molecular Quantum &L Molecular 4L Machine Learning Intermolecular
This Online Course Mechanics (mQM) Dynamics (MD) (ML) Interactions in the
) Emissive Layer
=] Video Tutorial: Tutorials: Tutorials: Tutorials:
| Introduction to * Functionals, Basis « Disordered System Building * Machine Learning for \_ J
Materials Science Sets and Geometry and MD Multistage Materials Science e ™\
(MS) Maestro Optimizations Workflows ) .
. RG £ i ¢ Optoelectronics Active Modu Ie 6
o -oroup Ehumeration * Molecular Deposition Learning
ideo: * QM Multistage Workflows
D Modeling for Organic . ¢ Kinetic Monte Carlo Charge Independent Case Study
; * Optoelectronics .
F = n Electronics ) Mobility i
e Organometallic Complexes . . 4 hours + Comp Time
- Bond and Ligand ° I\P/IoIeCL:tl_ar Dielectric
Dissociation Energy roperties Assignment:
* Band Shape = | Evaluating Hole
* Excited State Analysis Transport Materials
i End of Module d End of Module it End of Module @ Evaluated for
C Checkpoint N Checkpoint < Checkpoint PNl Certification
- O\ - - - J

(@ Schrédinger
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Homogeneous Catalysis and Reactivity

~

/

C N [ N C A
Module 1 Module 2 Module 3 Module 4 Module 5
Introduction to Molecular Quantum Molecular Quantum Machine Learning Guided Case Study
Materials Modeling Mechanics Mechanics
2 hours 7 hours + Comp Time 7 hours + Comp Time 3 hours + Comp Time 2 hours + Comp Time

Video: Video: Tutorials: Video: p=| Tutorial:
g Introduction to D Introduction to . Bond and Liaand g Introduction to p=] Fundamental
F = Materials Modeling & &%  Molecular Quantum an a_nt_ |g§n e Machine Learning Organometallic
This Online Course Mechanics (mQM) Issociation Energy (ML) Reactivity
: * Beta Elimination Reactions
Tutorials: L
I Video Tutorial: * Locating Transition States: Tutorials:
| Introduction to 2 gunctlo?alz Bt_as]s ?_ets and Part One ' * Machine Learning for N\ %
z\ﬁée)rll\ils Stclence eometry Optimizations Materials Science e N\
aestro . R. ; * Locating Transition States:
R-Group Enumeration Part Two « Machine Learning for Mod u Ie 6
. * QM Multistage Workflows , Homogeneous Catalysis
Video: * Reaction Workflow for Independent Case Study
D Modeling for * Rigid & Relaxed Coordinate Polyethylene Insertion
=X Homogeneous Scans 4 hours + Comp Time
Catalysis and ) ) P
Reactivity * Energies of Reactions
* Organometallic Complexes Assignment:
Predicting
Regioselectivity of
Hydroboration
S End of Module ,'g End of Module ,'9 End of Module @ Evaluated for
S Checkpoint © Checkpoint . Checkpoint PN Certification
- \ \ AN - J

(@ Schrédinger
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Surface Chemistry

4 N 4 N C I
Module 1 Module 2 Module 3 Module 4 Module 5
Introduction to Molecular & Periodic Molecular & Periodic Machine Learning Guided Case Study
Materials Modeling Quantum Mechanics Quantum Mechanics
2 hours 6 hours + Comp Time 5 hours + Comp Time 3 hours + Comp Time 4 hours + Comp Time

Video: Video: Tutorials: Video: n=| Tutorials:
D Introduction to D Introduction to « Modeling Surf D Introduction to o=] Palladium Precursor
L =5 Materials Modeling & &L Quantum Mechanics odeling surtaces &L Machine Learning Design
This Online Course (mQM & pQM) * Activation Energies for (ML) Heterogeneous
iole. Reactivity in Solids and on Carbon Dioxid
Tutorials: ol arbon Dioxide
ﬁ Video Tutorial: Surfaces Tutorials: Reduction
Introduction to * Functionals, Basis Sets and . Machine Learnin
N ¢ R- . g for N J
u I(V'\I/Tl;(;r'i\jllls Stcience Geometry Optimizations R-GroupiEnumeration Materials Science -~ N
aestro . - e Organometallic Complexes
QM Multistage Workflows 9 R P _ * Periodic Descriptors for Module 6
vid - Energies of Reactions e Beta Elimination Reactions Inorganic Solids
Lk : Independent Case Stud
D | Modeling for « Building and Manipulating : gfmd a_ns! Ligand P y
i issociation
&L Surface Chemistry Crystals 4 hours + Comp Time
* Properties of Bulk Crystals
Assignment:
Adsorption of
Formaldehyde onto
Palladium
K End of Module .'g End of Module .'g End of Module (:::) Evaluated for
3 Checkpoint s Checkpoint s Checkpoint PN Certification
- N\l - N\ - J

(@ Schrédinger
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Battery Materials

~

4 4 N [ N [ C I
Module 1 Module 2 Module 3 Module 4 Module 5
Introduction to Molecular & Periodic All-Atom Molecular Machine Learning Guided Case Study
Materials Modeling Quantum Mechanics Dynamics
2 hours 7 hours + Comp Time 6 hours + Comp Time 3 hours + Comp Time 3 hours + Comp Time

Video: Video: Video: Video: Tutorial:
N eg' ion ¢ P | Introduction to P | Introduction to P | Introduction to 0= E‘é%"a oosit
- Mn r;) nu? Iol\;ll g ling & oy~ Molecular and Periodic oy~ Molecular oy Machine Learning 0% Ec%rg$o§| 'ffn
Tr?iseoil?neOCoeurs% Quantum Mechanics Dynamics (MD) (ML) o & L (B01) SiEce
(MQM & pQM)
m—1 Video Tutorial: Tutorials: Tutorials:
| Introduction to Tutorials: * Disordered System Building « Machine Learning for Y )
Materials Science  Quantum Mechanical and MD Multistage Materials Science e ™\
(MS) Maestro Workflows and Properties: Workflows _ _ _
Part 1 « Building, Equilibrating and y g"acg'”‘i_ '—_‘taam'”g for lonic Module 6
. : onductivity
Video: * Quantum Mechanical Analyzing Polymers
I n
D Introduction to Workflows and Properties: * Diffusion Independent Case Study
i Part 2 . [ i
= I\B/Iot(tjerlilgg for rt 2 Polymer Electrolyte Analysis 4 hours + Comp Time
ate ¢ Building Bulk Crystals and « Liquid Electrolyte
Calculating Properties Properties: Part 1 )
* Calculating Intercalation and « Liquid Electrolyte Ass!gr)ment:
Voltage Curves Properties: Part 2 Modifying Battery
s . . . Electrolyte
e Lithium lon Migration Barrier
(NEB) Components
K End of Module .'g End of Module .'b End of Module @ Evaluated for
s Checkpoint S Checkpoint © Checkpoint PN Certification
o DZ2RNS L L - J

(@ Schrédinger
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Pharmaceutical Formulations

C N N (O C C R
Module 1 Module 2 Module 3 Module 4 Module 5
Introduction to All-Atom Molecular Coarse-Grained Molecular & Periodic Guided Case Study
Materials Modeling Dynamics Simulation Quantum Mechanics
2 hours 6 hours + Comp Time 5 hours + Comp Time 5 hours + Comp Time 2 hours + Comp Time

Video: Video: Video: Video: p=| Tutorial:
D Introduction to D Introduction to D Introduction to D Introduction to p=] Nanoemulsions with
= Materials Modeling & 4L Molecular Dynamics et Coarse-Graining el Quantum Mechanics Automated DPD
This Online Course (MD) (CG) (mQM & pQM) Parameterization
mj Video Tutorial: Tuto.rials: - Tutorials: Tutorials:
| INGANCHEMO ’ D'Sdoﬁgr;\a/ld leyftem Building * Ibuprofen Cyclodextrin « Functionals, Basis Sets and | \_ J
Materials Science 3\7 v uitistage Inclusion Complexes with Geometry Optimizations e N
(WESREES orkfiows the Martini Coarse-Grained T e W s M d I 6
* Molecular Dynamics Force Field 9 oduile
Video: Simulations for API (active o suareEn Censitare (5 * Bond and Ligand
D Modeling for pharmaceutical ingredient) Excr?pient Mogel with 9 Dissociation Energy Independent Case Study
i Miscibilit Lo : )
- ngr;rsgctﬁ:]t;cal y D|33|pa.t|ve Particle  pKa 4 hours + Comp Time
* Glass Transition Dynamics (DPD) S i 4 Manioulat
Temperature for APls utiding and Manipufating
Crystals Assignment:
e H ici
ygroscopicity * Properties of Bulk Molecular :SPIdI?rt(?perty
« Crystal Morphology Crystals LEelGioly
Z End of Module g End of Module g End of Module @ Evaluated for
N Checkpoint M Checkpoint © Checkpoint PNl Certification
- 2N \ - . J

(@ Schrédinger
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Polymeric Materials

P
Module 1

Introduction to
Materials Modeling

~

Introduction to

)

(MS) Maestro

Video:
Modeling for

Hv

.

2 hours
Video:
D Introduction to
L Materials Modeling

This Online Course

Video Tutorial:

Materials Science

Polymeric Materials

P
Module 2

Molecular Dynamics

7 hours + Comp Time

Video:

D Introduction to

4=t Molecular Dynamics
(MD)

Tutorials:

e Disordered System Building

and MD Multistage
Workflows

e Building, Equilibrating and
Analyzing Polymers

* Building Polymer-Polymer
Interfaces

* Crosslinking Polymers

it End of Module
s Checkpoint

p
Module 3

Molecular Dynamics

6 hours + Comp Time

Tutorials:

* Polymer Property Prediction
* Penetrant Loading

* Diffusion

e Polymer Electrolyte Analysis

Dielectric Properties

i End of Module
s Checkpoint

p
Module 4

Machine Learning

p
Module 5

Guided Case Study

3 hours + Comp Time

2 hours + Comp Time

Video:
D Introduction to
L =3 Machine Learning
(ML)
Tutorials:

* Machine Learning for
Materials Science

* Polymer Descriptors for
Machine Learning

it End of Module
s Checkpoint

Tutorial:
Epoxy Formulations

@

\_

>
Module 6

Independent Case Study

AN

4 hours + Comp Time

Assignment:
Polymer-Mediated
Graphene Dispersion

@ Evaluated for

PNl Certification

\_

J

(@ Schrédinger
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Consumer Packaged Goods

.

/

~

C C N (O C R
Module 1 Module 2 Module 3 Module 4 Module 5
Introduction to Molecular Dynamics Molecular Dynamics & Machine Learning Guided Case Study
Materials Modeling Coarse-Grained Simulation
2 hours 7 hours + Comp Time 6 hours + Comp Time 3 hours + Comp Time 2 hours + Comp Time
Video: Video: Tutorials: Video: p=| Tutorial:
D Introduction to D Introduction to _ > Introduction to p=] Coarse-Grained
LI~ Materials Modeling & LX™ Molecular Dynamics ¢ Cluster Analysis &L~ Machine Learning Modeling of SLES
This Online Course (MD) et T A (ML)
Tutorials: Electrostatic Potential .
“’1 Video Tutorial: _ _ Tutorials:
| Introd_uction .to e Disordered System Building * Viscosity « Machine Learning for \_ J
Materials Science and MD Multistage « Starch Moisture Uptake and Materials Science Ve N
(MS) Maestro Workflows Plasticization
* Pol r Descriptors for
« Building, Equilibrating and olyme P Module 6
Vid Analyzing Polymers Machine Learning
ideo:
D Modeling for - P | video: « Machine Learning for Independent Case Study
-y Consumer Packaged e Building a Carbohydrate X~ |ntroduction to SErEes )
Goods Frelbynes Coarse-Graining 4 hours + Comp Time
* Building Polymer-Polymer
Tutorials:
Interfaces Assignment:
« Crosslinking Polymers ¢ Building a Coarse-Grained Self-Aggregation of
Surfactant Model DDM and DPC
Molecules
Z End of Module g End of Module i End of Module @ Evaluated for
N Checkpoint M Checkpoint e Checkpoint PNl Certification
N\ 2N Z2ANG - J

~

(@ Schrédinger
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Teaching with Schrodinger
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Teaching with

Schrodinger

Schrodinger’s suite of software is now easily
accessible to students and educators.

About Resources Support
Build, calculate, and analyze Educational materials in a variety No computational experience?
structures for teaching of chemistry and biology subjects No problem! We will provide
purposes using web-based at the undergraduate and support for students and
Maestro (Small Molecule Drug high school levels (i.e. General instructors on how to use the
Discovery, Biologics Discovery, Chemistry, Organic Chemistry, Maestro interface and perform
& Materials Science) Medicinal Chemistry, etc.) basic functions
No need for students or Readily available lab Included with a purchase are in-
instructors to download assignments, lesson plans, and class demos with a Schrédinger
software—access is through a worksheets with computational Education Team member
virtual desktop environment via exercises for students and
a web browser instructors to use
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Teaching with Schrodinger Program: How Does It Work?

Open Web- Perform

Based Maestro Calculations

(@ Schrodinger @

Materials Science

Chemical Bonding

Introduction to Infrared Spectroscopy

VIRTUAL

WORKSTATION
Username @

Nucleophiles & Electrophiles

Password Maestro

By clicking Login, you agree to use the Schrédinger
Virtual Cluster in accordance with
the Schrodinger End User License Agreement.

BioLuminate

Instructors and students use Access industry-grade, Import, build, calculate,
their user credentials to login web-based Maestro directly visualize, and analyze
using a web browser on the virtual workstation molecular structures
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Teaching with Schrodinger Pre-Configured Lessons

Organic Chemistry

Chemical Bonding

Created with: Release 2021-3
thing knowiedge of Maesiro
cpplied: Chemical_bonding_worksheet
Calegories: high schoal, genersl chemistry 1

About this Lesson

In this lesson pian, students wil examine the relationship between the electronic
structure of atoms and the fonic and covalent chemical bonds they for. Students il
learn about bond polarity and electronegativty by looking at electron distributions of
Various small molecules

Using Maestro, students wil create a map of electrostatic potential (ESP) of various
small molecules with Jaguar and examine the electrostatic potential on the molecular
surface. These renderings will help with visualizing electronegativity trends and gauging
the polarity of chemical bonds.

Polar covalent bond:
When atoms wit =
aiferent olectronegativtis [ H—C: -9

sharo oloctrons i@
covalont bond

Learning Objectives

« Explain the relationship between the type of bonding and the properties of the.
elements partiipating in the bond.

Use slectronegativty differences t identify nonpolar covalent, polar covalent,
and fonic bonds.

Identify a chemical bond type by mapping electrostatic potential surfaces onto
molecules.

Introduction to Infrared Spectroscopy

Crested vith: _Relea:
P \Sonig s A
Fies Suppliec: IR_worksheet

Categories:  organic chemistry

About this Lesson

I this lesson, students wil leam the fundamentals of infrared (IR) spectrascopy and the.

many ifleren kincs of veratonal exctaon, incuig stelching and bendng. R

spechuuisy can be to identify which functional groups are present in a
compound,

Using Maestro, students will perform frequency calculations and visualize various.
vibrational modes of small molecules. Students will then generate IR spectra, identify
Various regions that correspond to partcular functional groups, and determine which IR
Spectrum matches to a given organic compoun

Vibrational Modes of C;Hy
4 ("

SiMunine brsiorl mocks of sl mlaces by paoming sy
calculation

i SRR S ——
group idenification

Learning Objectives

Nucleophiles & Electrophiles

Crestedwitn:  Release 20213

‘working knowedge of Maestro

. Chemical_bonding_worksheet
organic chemistry

About this Lesson

I e devcn, par s v euie e raver I icacptae a0
clectrophiles. Students wil leam about inductive ffects and how to. identity
Rucleophiic and electrophilc centers in a moleculs. This wil help with predicting where
electron density can be found and where it i likely to flow during a reaction

Using Masstro, students will Greate a map of electrostatic potential (ESP) of various
Rucieophiles and slecirophiles with Jaguar and examine the electrostatic potential on
the molecular surface. These renderings will help with visualizing sies of high and low
electron densit.

ot P

H’/ H

Learning Objectives

« ldentify electron-rich andelectron-poor regions by mapping electrostatic
potential surfaces onto molecules

HOMO-LUMO Energy Gap

Created witn:  Release 2021-3
Prerequisies: working knowiedge of Massiro
Pl ke o0 V0, mialen

general chemisty, organic chemistry

About this Lesson

Using Maestro, students will use the 2D Sketcher to leam how to draw small
molecules. Energy minimizations and geomelry optimization calculations will be.
performad using Jaguar. Molecular orbital surfaces of the HOMO and LUMO will also
be calculated and visualized. HOMO-LUMO energy gaps can be found in the project
table.

Learning Objectives

Build a molecule using the 2D sketcher
caloulation surfaces

Visualize the HOMO and LUMO of a molecule

Caloulate the HOMO-LUMO energy gap using results n the Project Table

VSEPR Theory

Crseo R 20213
working knowledge of
Has St VAEPS neonwatshos ghiramas
ategores:  igh school, generalchemisty

About this Lesson

I this lesson plan, students wil examine the three-dimensional shapes and sizes of

molecules through the VSEPR model by analyzing their bond angles and bond lengths.

Starting with Lewis structures, students will identity the regions of elactron density
tom and analyze. o

umg Maestro, students will bl and optimize molecular geometries with Jaguar and
measure bond distances and angles to predict geomelric arrangements. These
caotatons wi help with visualizing how certain geomelries betler minimize electron
repuisions than others.

ak
[7al
s
e
Trgonal  Sawhorse or
Bipyramidal  sossaw

Learning Objectives

« Use Lewis structures and the valence shell electron-pair repulsion (VSEPR)
model to creats and predict shapes of molecules

« Perform quantum machanical calculations to optimize molecular geomatries and

Protein Ligand Docking

Createdwitn:  Release 20213
Prerequisies: working knowlsdge of Maesiro
Files Supplied: Protein_ligand_docking_worksheet
Categories:  biochemisty, mecicinal chemistry

About this Lesson

Determining the binding mode of an active molscule to a given protsin target is
important in the crug discovery pipeline. This lesson wil focus on reproducing an
experimentally observed binding mode through docking.

Using Maestro, students wil learn how to import a pdb file of a crystal structure,
prepare a protein and ligand, as well as dock a ligand info a protein receplor using
Schrodinger’s Gido. They will also analyze protein-igand interactions from a Ligand
Interaction Diagram.

Learning Objectives
« Prepare ligand and protein structures in Maestro

Learn the steps of a molecular docking workfiow using Schradinger's Glide

‘Analyze integral protein-iigand interactions within an active site using the Ligand

Interaction Diagram

Stereoisomers

Crosed v Rlote 20213
Prerequisies: working knowledge of Massiro

Flles Supplied: Stereaisomers_worksheet

Categores: nermistry

About this Lesson

In ths lesson plan, students will explore compounds called stereoisomers that differ
from each other only in the three-dimensional, spatial arrangement of their atoms, but
ot in the connectivity of their atoms. The connection batwesn stereoisomerism and
dirug action willaso be discussed.

Using Maesitro, students willuse the 2D Sketcher and 3D Buider tools {0 leam how to
draw different kinds
calculations will be performed using Jaguar. The tie function will be used to compare
Stereoisomeric. relationships between pairs of molecules to determine if they are
enantiomers or diastereomers.

i e
Loaring Objectives

« Designate configuration of a stereocenter using the Gahn-ingold-Prelog (CIP)

system
« Determine pai

Substitution Nucleophilic (Sy2) Reactions

Crsed i Floase 20213
Prerequisies: - working knowledge of Massiro
Files Supplied: SN2_reactions_worksheet
Categories:  organic chemistry

About this Lesson

In this lesson plan, students will examine bimolecular subsiitution nucleophilc (5,2)
reactions. Transition state theory wil be introduced 1o analyze the concerted
mechanism of how a nucleophile attacks an electrophile 1o form a given product
Reaction energy diagrams will be investigated to determine whether a reaction is
exergonic or endergoric.

Using Maestro, students will use Jaguar's AuloTS panel 1o perform geometry
optimization calcuations of the reactants and products of an §,2 reaction, determine
which bonds are breaking and forming, establish correspondence between atoms in
the reactants and the products, and generate a transition state structure. Then, they
wil render

52 Backsida Attack
+
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Learning Objectives

= Plot reaction energy diagrams with activation energy barrers to determine their
chemical reactivity characteristics (.. endergonic, exergonic, etc.)

@ Schrodinger

Diels-Alder Reactions

e e

ftes:  working knowedge of
Fies Supph: Dl s worteneet
Categories:  organic chemistry

About this Lesson

In this lesson plan, students wil examine the relationship between a diene and a
dienophile in a Diels-Alder reaction. Transition state theory will be introduced o analyze
the concerted mechanism of a [4+2] cycloaddition. Reaction energy diagrams will be
invesiigated to determine whether a reaction is exergonic or endergonic.

Using Maestro, students will use Jaguar’s AUtoTS panel to calculate the energetics of
the reactants, product, and transition state. Students wil also calculate the HOMO and
LUMO of reactants to help with visualizing t molecular orbital overlap.

| HOMO of
=
£ {]’C X F 9]

dienophile

Learning Objectives

Diels-Aldor
Plot reaction energy diagrams with activation energy baniers to determin their
‘chemical reactivity characteristics .. endergonic, exergonic, etc.)

Generate molecular orbitals of the diene and dienophile to analyze favorable
orbital overlap for product formation

Structure-Based Virtual Screening

Created vith:  Release 20213
P werkdg ncueconof es
Fies Supplied: SBVS_work

Categories: . biochemisiy, medicnal chamisiy
About this Lesson

“This lesson wil focus on an important early stage of drug discovery in which protein
structures and molecular modeing are utized 1o identify molecules that can be further
developed into drugs.

Using Masstro, students will leam how to perform a virtual screen for potential
inhibitors of FXa using the ligand docking application Gide. Students will lsarn how to.
generate a protein receptor grid, dock a set of ligands into the receptor grid, and
analyze the docking results. Students can then sketch thelr own inhibitor designs and
evaluate their value,

L.

¢ 195,

Koaek

Learning Objectives
« Learn the staps of a molecular docking workflow using Schrodinger’s Gide
« Perform a structure-based virtual screen of a small set of ligands
= Design your own inhibitor for FXa and determine fts docking score
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Modernizing Science Education
with Molecular Modeling Tools

e BY KAT BAY, PH.D. | JAN 24,2022

Molecular modeling provides a powerful set of tools that are used in the life sciences industry to
° simulate molecular behavior in chemical or biological systems, making it a key component in
many areas of research, including drug discovery. Although these tools would prove invaluable in
o STEM classrooms by allowing students the ability to visualize and interact with molecules in a
three-dimensional environment, molecular modeling is rarely included in curriculums due to a
o number of technological barriers, including students not having enough disk space to download
new software, laptops not being up to date for software to be compatible, as well as more historical

barriers such as cost and accessibility.

Link here
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Houk group alums Katherine (Kat) Bay and Hung Pham team up to allow UCLA students to run
computations remotely as part of Chem 30A and Chem 30B.

A member of the Education Team at Schrédinger, Dr. Katherine Bay collaborated with
Dr. Hung Pham and the undergraduate students in his Chem 30A (Organic Chemistry
I: Structure and Reactivity) and 30B (Organic Chemistry II: Reactivity, Synthesis, and
Spectroscopy) classes in the Fall quarter of 2021.

The students were part of a beta test for the Teaching with Schrodinger virtual cluster where they ran
calculations that integrate with their organic chemistry course curriculum and the feedback so far has
been impressive. Students logged into a virtual workstation through a web-browser where
Schrédinger's Maestro is already installed. The benefits to using a virtual cluster are that students and
instructors don't have to download any new software to their laptops and can run calculations
anywhere at any time.

Link here

"There is a huge boom now in companies looking for computational chemists,
particularly for drug discovery. The challenge is that many people don't
necessarily get exposed to it in school, and | think we are missing out on students

who would really like this kind of experience."
- Prof. Severin Schneebeli
Associate Professor of Chemistry at University of Vermont

K(& Schrodinger


https://extrapolations.com/modernizing-science-education-with-molecular-modeling-tools/
https://www.chemistry.ucla.edu/news/enabling-student-access-industry-grade-computational-software
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