Source code for schrodinger.application.matsci.elasticity.tensors

"""
This module provides a base class for tensor-like objects and methods for
basic tensor manipulation.  It also provides a class, SquareTensor,
that provides basic methods for creating and manipulating rank 2 tensors

Copyright Schrodinger, LLC. All rights reserved.
"""

# Based on pymatgen/analysis/elasticity/tensors.py (LEGAL-413)
# last updated from upstream: 9759a6e on May 9, 2018

import collections.abc
import itertools
import string
import warnings
from fractions import Fraction

import numpy as np
import spglib
from scipy.linalg import polar

from schrodinger.application.matsci.nano import xtal

voigt_map = [(0, 0), (1, 1), (2, 2), (1, 2), (0, 2), (0, 1)]
reverse_voigt_map = np.array([[0, 5, 4], [5, 1, 3], [4, 3, 2]])


[docs]class Tensor(np.ndarray): """ Base class for doing useful general operations on Nth order tensors, without restrictions on the type (stress, elastic, strain, piezo, etc.) """ def __new__(cls, input_array, vscale=None, check_rank=None): """ Create a Tensor object. Note that the constructor uses __new__ rather than __init__ according to the standard method of subclassing numpy ndarrays. Args: input_array: (array-like with shape 3^N): array-like representing a tensor quantity in standard (i. e. non-voigt) notation vscale: (N x M array-like): a matrix corresponding to the coefficients of the voigt-notation tensor """ obj = np.asarray(input_array).view(cls) obj.rank = len(obj.shape) if check_rank and check_rank != obj.rank: raise ValueError("{} input must be rank {}".format( obj.__class__.__name__, check_rank)) vshape = tuple([3] * (obj.rank % 2) + [6] * (obj.rank // 2)) obj._vscale = np.ones(vshape) if vscale is not None: obj._vscale = vscale if obj._vscale.shape != vshape: raise ValueError("Voigt scaling matrix must be the shape of the " "voigt notation matrix or vector.") if not all([i == 3 for i in obj.shape]): raise ValueError("Pymatgen only supports 3-dimensional tensors, " "and default tensor constructor uses standard " "notation. To construct from voigt notation, use" " {}.from_voigt".format(obj.__class__.__name__)) return obj def __array_finalize__(self, obj): if obj is None: return self.rank = getattr(obj, 'rank', None) self._vscale = getattr(obj, '_vscale', None) self._vdict = getattr(obj, '_vdict', None) def __array_wrap__(self, obj): """ Overrides __array_wrap__ methods in ndarray superclass to avoid errors associated with functions that return scalar values """ if len(obj.shape) == 0: return obj[()] else: return np.ndarray.__array_wrap__(self, obj) def __hash__(self): """ define a hash function, since numpy arrays have their own __eq__ method """ return hash(self.tobytes()) def __repr__(self): return "{}({})".format(self.__class__.__name__, self.__str__())
[docs] def zeroed(self, tol=1e-3): """ returns the matrix with all entries below a certain threshold (i.e. tol) set to zero """ new_tensor = self.copy() new_tensor[abs(new_tensor) < tol] = 0 return new_tensor
[docs] def transform(self, symm_op): """ Applies a transformation (via a symmetry operation) to a tensor. Args: symm_op (SymmOp): a symmetry operation to apply to the tensor """ rotation_matrix = symm_op[0] dim = self.shape rank = len(dim) assert all([i == 3 for i in dim]) # Build einstein sum string lc = string.ascii_lowercase indices = lc[:rank], lc[rank:2 * rank] einsum_string = ','.join([a + i for a, i in zip(*indices)]) einsum_string += ',{}->{}'.format(*indices[::-1]) einsum_args = [rotation_matrix] * rank + [self] return self.__class__(np.einsum(einsum_string, *einsum_args))
[docs] def rotate(self, matrix, tol=1e-3): """ Applies a rotation directly, and tests input matrix to ensure a valid rotation. Args: matrix (3x3 array-like): rotation matrix to be applied to tensor tol (float): tolerance for testing rotation matrix validity """ matrix = SquareTensor(matrix) if not matrix.is_rotation(tol): raise ValueError("Rotation matrix is not valid.") return self.transform((matrix), [0., 0., 0.])
[docs] def einsum_sequence(self, other_arrays, einsum_string=None): """ Calculates the result of an einstein summation expression """ if not isinstance(other_arrays, list): raise ValueError("other tensors must be list of " "tensors or tensor input") other_arrays = [np.array(a) for a in other_arrays] if not einsum_string: lc = string.ascii_lowercase einsum_string = lc[:self.rank] other_ranks = [len(a.shape) for a in other_arrays] idx = self.rank - sum(other_ranks) for length in other_ranks: einsum_string += ',' + lc[idx:idx + length] idx += length einsum_args = [self] + list(other_arrays) return np.einsum(einsum_string, *einsum_args)
@property def symmetrized(self): """ Returns a generally symmetrized tensor, calculated by taking the sum of the tensor and its transpose with respect to all possible permutations of indices """ perms = list(itertools.permutations(range(self.rank))) return sum([np.transpose(self, ind) for ind in perms]) / len(perms) @property def voigt_symmetrized(self): """ Returns a "voigt"-symmetrized tensor, i. e. a voigt-notation tensor such that it is invariant wrt permutation of indices """ if not (self.rank % 2 == 0 and self.rank > 2): raise ValueError("V-symmetrization requires rank even and > 2") v = self.voigt perms = list(itertools.permutations(range(len(v.shape)))) new_v = sum([np.transpose(v, ind) for ind in perms]) / len(perms) return self.__class__.from_voigt(new_v)
[docs] def is_symmetric(self, tol=1e-5): """ Tests whether a tensor is symmetric or not based on the residual with its symmetric part, from self.symmetrized Args: tol (float): tolerance to test for symmetry """ return (self - self.symmetrized < tol).all()
[docs] def is_fit_to_structure(self, structure, tol=1e-2): """ Tests whether a tensor is invariant with respect to the symmetry operations of a particular structure by testing whether the residual of the symmetric portion is below a tolerance Args: structure (Structure): structure to be fit to tol (float): tolerance for symmetry testing """ return (self - self.fit_to_structure(structure) < tol).all()
@property def voigt(self): """ Returns the tensor in Voigt notation """ v_matrix = np.zeros(self._vscale.shape, dtype=self.dtype) this_voigt_map = self.get_voigt_dict(self.rank) for ind in this_voigt_map: v_matrix[this_voigt_map[ind]] = self[ind] if not self.is_voigt_symmetric(): warnings.warn("Tensor is not symmetric, information may " "be lost in voigt conversion.") return v_matrix * self._vscale
[docs] def is_voigt_symmetric(self, tol=1e-6): """ Tests symmetry of tensor to that necessary for voigt-conversion by grouping indices into pairs and constructing a sequence of possible permutations to be used in a tensor transpose """ transpose_pieces = [[[0 for i in range(self.rank % 2)]]] transpose_pieces += [ [range(j, j + 2)] for j in range(self.rank % 2, self.rank, 2) ] for n in range(self.rank % 2, len(transpose_pieces)): if len(transpose_pieces[n][0]) == 2: transpose_pieces[n] += [transpose_pieces[n][0][::-1]] for trans_seq in itertools.product(*transpose_pieces): trans_seq = list(itertools.chain(*trans_seq)) if (self - self.transpose(trans_seq) > tol).any(): return False return True
[docs] @staticmethod def get_voigt_dict(rank): """ Returns a dictionary that maps indices in the tensor to those in a voigt representation based on input rank Args: rank (int): Tensor rank to generate the voigt map """ vdict = {} for ind in itertools.product(*[range(3)] * rank): v_ind = ind[:rank % 2] for j in range(rank // 2): pos = rank % 2 + 2 * j v_ind += (reverse_voigt_map[ind[pos:pos + 2]],) vdict[ind] = v_ind return vdict
[docs] @classmethod def from_voigt(cls, voigt_input): """ Constructor based on the voigt notation vector or matrix. Args: voigt_input (array-like): voigt input for a given tensor """ voigt_input = np.array(voigt_input) rank = sum(voigt_input.shape) // 3 t = cls(np.zeros([3] * rank)) if voigt_input.shape != t._vscale.shape: raise ValueError("Invalid shape for voigt matrix") voigt_input = voigt_input / t._vscale this_voigt_map = t.get_voigt_dict(rank) for ind in this_voigt_map: t[ind] = voigt_input[this_voigt_map[ind]] return cls(t)
[docs] @classmethod def from_values_indices(cls, values, indices, populate=False, structure=None, voigt_rank=None, vsym=True, verbose=False): """ Creates a tensor from values and indices, with options for populating the remainder of the tensor. :param values: numbers to place at indices :type values: list[float] :param indices: array-like collection of indices to place values at :param populate: whether to populate the tensor :type populate: bool :param structure: structure to base population or fit_to_structure on :type structure: Structure :param voigt_rank: full tensor rank to indicate the shape of the resulting tensor. This is necessary if one provides a set of indices more minimal than the shape of the tensor they want, e.g. Tensor.from_values_indices((0, 0), 100) :type voigt_rank: int :param vsym: whether to voigt symmetrize during the optimization procedure :type vsym: bool :param verbose: whether to populate verbosely :type verbose: bool """ # auto-detect voigt notation # TODO: refactor rank inheritance to make this easier indices = np.array(indices) if voigt_rank: shape = ([3] * (voigt_rank % 2) + [6] * (voigt_rank // 2)) else: shape = np.ceil(np.max(indices + 1, axis=0) / 3.) * 3 base = np.zeros(shape.astype(int)) for v, idx in zip(values, indices): base[tuple(idx)] = v if 6 in shape: obj = cls.from_voigt(base) else: obj = cls(base) if populate: assert structure, "Populate option must include structure input" obj = obj.populate(structure, vsym=vsym, verbose=verbose) elif structure: obj = obj.fit_to_structure(structure) return obj
[docs]class TensorCollection(collections.abc.Sequence): """ A sequence of tensors that can be used for fitting data or for having a tensor expansion """
[docs] def __init__(self, tensor_list, base_class=Tensor): self.tensors = [ base_class(t) if not isinstance(t, base_class) else t for t in tensor_list ]
[docs] def __len__(self): return len(self.tensors)
def __getitem__(self, ind): return self.tensors[ind] def __iter__(self): return self.tensors.__iter__()
[docs] def zeroed(self, tol=1e-3): return self.__class__([t.zeroed(tol) for t in self])
[docs] def transform(self, symm_op): return self.__class__([t.transform(symm_op) for t in self])
[docs] def rotate(self, matrix, tol=1e-3): return self.__class__([t.rotate(matrix, tol) for t in self])
@property def symmetrized(self): return self.__class__([t.symmetrized for t in self])
[docs] def is_symmetric(self, tol=1e-5): return all([t.is_symmetric(tol) for t in self])
[docs] def fit_to_structure(self, structure, symprec=0.1): return self.__class__( [t.fit_to_structure(structure, symprec) for t in self])
[docs] def is_fit_to_structure(self, structure, tol=1e-2): return all([t.is_fit_to_structure(structure, tol) for t in self])
@property def voigt(self): return [t.voigt for t in self] @property def ranks(self): return [t.rank for t in self]
[docs] def is_voigt_symmetric(self, tol=1e-6): return all([t.is_voigt_symmetric(tol) for t in self])
[docs] @classmethod def from_voigt(cls, voigt_input_list, base_class=Tensor): return cls([base_class.from_voigt(v) for v in voigt_input_list])
[docs] def convert_to_ieee(self, structure, initial_fit=True, refine_rotation=True): return self.__class__([ t.convert_to_ieee(structure, initial_fit, refine_rotation) for t in self ])
[docs]class SquareTensor(Tensor): """ Base class for doing useful general operations on second rank tensors (stress, strain etc.). """ def __new__(cls, input_array, vscale=None): """ Create a SquareTensor object. Note that the constructor uses __new__ rather than __init__ according to the standard method of subclassing numpy ndarrays. Error is thrown when the class is initialized with non-square matrix. Args: input_array (3x3 array-like): the 3x3 array-like representing the content of the tensor vscale (6x1 array-like): 6x1 array-like scaling the voigt-notation vector with the tensor entries """ obj = super(SquareTensor, cls).__new__(cls, input_array, vscale, check_rank=2) return obj.view(cls) @property def trans(self): """ shorthand for transpose on SquareTensor """ return SquareTensor(np.transpose(self)) @property def inv(self): """ shorthand for matrix inverse on SquareTensor """ if self.det == 0: raise ValueError("SquareTensor is non-invertible") return SquareTensor(np.linalg.inv(self)) @property def det(self): """ shorthand for the determinant of the SquareTensor """ return np.linalg.det(self)
[docs] def is_rotation(self, tol=1e-3, include_improper=True): """ Test to see if tensor is a valid rotation matrix, performs a test to check whether the inverse is equal to the transpose and if the determinant is equal to one within the specified tolerance Args: tol (float): tolerance to both tests of whether the the determinant is one and the inverse is equal to the transpose include_improper (bool): whether to include improper rotations in the determination of validity """ det = np.abs(np.linalg.det(self)) if include_improper: det = np.abs(det) return (np.abs(self.inv - self.trans) < tol).all() \ and (np.abs(det - 1.) < tol)
[docs] def refine_rotation(self): """ Helper method for refining rotation matrix by ensuring that second and third rows are perpindicular to the first. Gets new y vector from an orthogonal projection of x onto y and the new z vector from a cross product of the new x and y Args: tol to test for rotation Returns: new rotation matrix """ new_x, y = get_uvec(self[0]), get_uvec(self[1]) # Get a projection on y new_y = y - np.dot(new_x, y) * new_x new_z = np.cross(new_x, new_y) return SquareTensor([new_x, new_y, new_z])
[docs] def get_scaled(self, scale_factor): """ Scales the tensor by a certain multiplicative scale factor Args: scale_factor (float): scalar multiplier to be applied to the SquareTensor object """ return SquareTensor(self * scale_factor)
@property def principal_invariants(self): """ Returns a list of principal invariants for the tensor, which are the values of the coefficients of the characteristic polynomial for the matrix """ return np.poly(self)[1:] * np.array([-1, 1, -1])
[docs] def polar_decomposition(self, side='right'): """ calculates matrices for polar decomposition """ return polar(self, side=side)
[docs]def get_uvec(vec): """ Gets a unit vector parallel to input vector""" norm = np.linalg.norm(vec) if norm < 1e-8: return vec return vec / norm
[docs]def get_spglib_symmops(spg_cell, symprec=xtal.ASSIGN_SPG_SYMPREC, cartesian=False): ops = spglib.get_symmetry(spg_cell, symprec=symprec) # Use P1 translations/rotations if symmetry could not be found (MATSCI-8107) ops = ops if ops is not None else spglib.get_symmetry_from_database(1) translations = [] for t in ops['translations']: translations.append( [float(Fraction.from_float(c).limit_denominator(1000)) for c in t]) translations = np.array(translations) # fractional translations of 1 are more simply 0 translations[np.abs(translations) == 1.] = 0. rotations = ops['rotations'] symmops = [] vecs = spg_cell[0] invmat = np.linalg.inv(vecs.T) for rot, trans in zip(rotations, translations): if cartesian: rot = np.dot(vecs.T, np.dot(rot, invmat)) trans = np.dot(trans, vecs) symmops.append((rot, trans)) return symmops
[docs]def symmetry_reduce(tensors, struct, tol=1e-8, **kwargs): """ Function that converts a list of tensors corresponding to a structure and returns a dictionary consisting of unique tensor keys with symmop values corresponding to transformations that will result in derivative tensors from the original list :param tensors: list of Tensor objects to test for symmetrically-equivalent duplicates :type tensors: list[Tensor] :param structure: structure from which to get symmetry :type structure: Structure :param tol: tolerance for tensor equivalence :type tol: float :param kwargs: keyword arguments for the SpacegroupAnalyzer :returns: dictionary consisting of unique tensors with symmetry operations corresponding to those which will reconstruct the remaining tensors as values """ vecs = np.array(xtal.get_vectors_from_chorus(struct)) fcoords = xtal.trans_cart_to_frac_from_vecs(struct.getXYZ(), *vecs) anums = [a.atomic_number for a in struct.atom] spg_cell = (vecs, fcoords, anums) symmops = get_spglib_symmops(spg_cell, cartesian=True) unique_tdict = {} for tensor in tensors: is_unique = True for unique_tensor, symmop in itertools.product(unique_tdict, symmops): if (np.abs(unique_tensor.transform(symmop) - tensor) < tol).all(): unique_tdict[unique_tensor].append(symmop) is_unique = False break if is_unique: unique_tdict[tensor] = [] return unique_tdict
[docs]def get_tkd_value(tensor_keyed_dict, tensor, allclose_kwargs=None): """ Helper function to find a value in a tensor-keyed- dictionary using an approximation to the key. This is useful if rounding errors in construction occur or hashing issues arise in tensor-keyed-dictionaries (e. g. from symmetry_reduce). Resolves most hashing issues, and is preferable to redefining eq methods in the base tensor class. :param tensor_keyed_dict: dict with Tensor keys :type tensor_keyed_dict: dict :param tensor: tensor to find value of in the dict :param allclose_kwargs: dict of keyword-args to pass to allclose. :type allclose_kwargs: dict """ if allclose_kwargs is None: allclose_kwargs = {} for tkey, value in tensor_keyed_dict.items(): if np.allclose(tensor, tkey, **allclose_kwargs): return value
[docs]def get_symmetric(array): """ Return a symmetric matrix from a square matrix. :param numpy.array array: Input array :return numpy.array: Symmetrized array """ return (array + array.T) * 0.5