Source code for schrodinger.application.matsci.freevolume

"""
Analyzes free volume in a structure

Copyright Schrodinger, LLC. All rights reserved.
"""

import functools
import glob
import json
import math
import os
import sys
import tarfile
from collections import OrderedDict
from collections import defaultdict
from collections import namedtuple
from operator import attrgetter
from past.utils import old_div

import numpy

from schrodinger import structure
from schrodinger import surface
from schrodinger.application.matsci import amorphous
from schrodinger.application.matsci import jobutils
from schrodinger.application.matsci import msprops
from schrodinger.application.matsci import textlogger
from schrodinger.structutils import color
from schrodinger.utils import fileutils

GENERIC_TITLE = 'free_volume'

SPACING = 0.25
PROBE_RADIUS = 1.4
INFO = 'info'
VOIDS = 'voids'
SURFS = 'surfs'
XYZ_TOLERANCE = 0.01

FREE_VOLUME_PROP = 'r_matsci_Free_Volume_A^3'
FREE_VOLUME_PCT_PROP = 'r_matsci_Free_Volume_%'
VOL_FILE_PROP = 's_matsci_Volume_File'
VOID_FILE_PROP = 's_matsci_Void_File'
MAE_FILE_PROP = 's_matsci_FV_Coord_File'
FREEVOL_TRJ_ANALYSIS = 'b_matsci_freevolume_trj_analysis'

COMMENT_BIT = '#'
GRID_RAD_BIT = '_g%.2f_r%.2f'
VOL_FILE_ENDING = '-freevolumes.txt'
VOIDS_FILE_ENDING = '-voids.json'
SURF_FILE_ENDING = '.viz'
SURF_FILE_FOLDER = '_surfs'
TAR_ENDING = '.gz'
SURF_TAR_ENDING = SURF_FILE_FOLDER + TAR_ENDING
MAE_FILE_ENDING = '-fv_coords.maegz'
TRJ_MIDFIX = 'trj'

GridRadius = namedtuple('GridRadius', ['grid', 'radius'])

SURF_COMMENT = 'Radius: %.2f, Spacing: %.2f'
SURF_NAME = 'Vol=%.2f r=%.2f g=%.2f %d'
SURF_TRJ_NAME = 'Vol=%.2f r=%.2f g=%.2f fr=%d %d'


[docs]class FatalCoordinateError(Exception): """ Raised if something is wrong with matching the current coordinates to the ones used to compute free volume. Typically and atom number or element mismatch """
[docs]def archive_folder(filename, archive_folder): """ Archive and delete the passed folder :param filename: Filename of the archived file :type filename: str :param archive_folder: The folder to archive :type archive_folder: str """ jobutils.archive_job_data(filename, [archive_folder]) jobutils.add_outfile_to_backend(filename) fileutils.force_rmtree(archive_folder, True)
[docs]def unarchive_surf_data(struct): """ Unarchive the free volume surface folders related to the passed structure :param struct: The structure for which freevolume was calculated :type struct: `schrodinger.structure.Structure` """ if not struct: return source_path = jobutils.get_source_path(struct) with fileutils.chdir(source_path): for filename in glob.glob('*' + SURF_TAR_ENDING): # Extract the surf files and delete the archived file with tarfile.open(name=filename, mode='r:gz', format=jobutils.TGZ_FORMAT) as tar: tar.extractall() os.remove(filename)
[docs]def get_free_volume_structure(struct): """ Get the structure that the free volume calculation was run on :type struct: `schrodinger.structure.Structure` :param struct: The structure that contains the properties that point to the free volume structure :rtype: `schrodinger.structure.Structure` or None :return: The structure from the free volume calculation or None if it couldn't be found (due to missing property or file) """ mae_name = struct.property.get(MAE_FILE_PROP) if not mae_name: return # If mae file is not found, check the path relative to the source path if not os.path.exists(mae_name): source_path = jobutils.get_source_path(struct) mae_name = os.path.join(source_path, mae_name) try: fv_struct = structure.Structure.read(mae_name) except IOError: return return fv_struct
[docs]def check_coordinates_changed(struct): """ Check that the given structure matches the structure the free volume calculation was run on. In addition to basic number/type of atoms, the coordinates must also be the same since the void data has XYZ information incorporated in it. :type struct: `schrodinger.structure.Structure` :param struct: The structure that contains the properties that point to the free volume structure :rtype: `schrodinger.structure.Structure`, False, or None :return: False if the structures match (number of atoms, elements and XYZ), `Structure` if the coordinates do not match - in this case the returned structure is a structure with the original free volume coordinates suitable for passing to fix_free_volume_coordinates, None if the free volume structure couldn't be found (due to missing property or file) :raise `FatalCoordinateError`: If something unfixable does not match between the two structures, such as number of atoms or elements """ fv_struct = get_free_volume_structure(struct) if not fv_struct: return if struct.atom_total != fv_struct.atom_total: raise FatalCoordinateError('Structures have two different atom totals.') for index in range(1, struct.atom_total + 1): atom = struct.atom[index] fv_atom = fv_struct.atom[index] if atom.element != fv_atom.element: raise FatalCoordinateError('Elements do not match for atom %d.' % index) if not numpy.allclose( atom.xyz, fv_atom.xyz, rtol=0.0, atol=XYZ_TOLERANCE): return fv_struct return False
[docs]def fix_free_volume_coordinates(struct, fv_struct=None): """ Change the coordinates of struct to be those from the free volume calculation. Note that this assumes check_coordinates_changed has been called first (and the results dealt with). The structure is modified in-place :type struct: structure.Structure :param struct: The structure to modify :type fv_struct: structure.Structure :param struct: The structure with the coordinates to transfer to struct. If not given, the structure obtained by get_free_volume_structure will be used. """ if not fv_struct: fv_struct = get_free_volume_structure(struct) if not fv_struct: return struct.setXYZ(fv_struct.getXYZ())
[docs]def get_atom_layers(atom, origin, num_layers, layer_width, axis): """ Get the range of layers that the given atom would intersect. :type atom: `schrodinger.structure._StructureAtom` :param atom: The atom to find the layers for :type origin: float :param origin: The offset to add to each layer because the system starts at a point other than zero. The offset is along the axis defined by the axis parameter. :type num_layers: int :param num_layers: The number of layers :type layer_width: float :param layer_width: The width of each layer :type axis: int :param axis: 0, 1 or 2 to indicate the layers are cross sections of the X, Y or Z axis :rtype: list :return: Each item of the list is a layer the atom intersects based on its VdW radius """ relative_val = atom.xyz[axis] - origin min_val = relative_val - atom.radius max_val = relative_val + atom.radius min_layer = int(math.floor(old_div(min_val, layer_width))) max_layer = int(math.floor(old_div(max_val, layer_width))) layers = [] for raw_layer in range(min_layer, max_layer + 1): # For atoms that lie outside the PBC, raw_layer may be the "image" of # the actual layer number - either much larger than the total number of # layers or a negative value. Bring it mathematically back into the PBC # region via these while loops. while raw_layer < 0: # Cases that extend to the "left" of the PBC raw_layer += num_layers while raw_layer >= num_layers: # Cases that extend to the "right" of the PBC raw_layer -= num_layers layers.append(raw_layer) return layers
[docs]def extract_grid_and_radius(word): """ Given a string, extract the floating point grid spacing and probe radius values :type word: str :param word: The string to extract the grid & radius from :rtype: `GridRadius` :return: The GridRadius namedtuple with the extracted values """ tokens = word.split('_') radius = float(tokens[-1].lstrip('r')) grid = float(tokens[-2].lstrip('g')) return GridRadius(grid=grid, radius=radius)
[docs]def get_grid_radius_property_values(struct, propbase): """ Get all the grid and radius values for properties on the structure that begin with the given base string. :type struct: `schrodinger.structure.Structure` :param struct: The structure to extract the properties from :type propbase: str :param propbase: The starting string for properties to search for :rtype: dict :return: Keys are GridRadius instances, values are the property value for that set of grid/radius values. """ values = {} for prop, value in struct.property.items(): if prop.startswith(propbase): gridrad = extract_grid_and_radius(prop) values[gridrad] = value return values
[docs]def get_file_data(struct, propbase, file_reader, override_path=None): """ Use file_reader to extract the data from the files specified by the given structure properties :type struct: `schrodinger.structure.Structure` :param struct: The structure to get data for :type propbase: str :param propbase: The starting string for properties to search for :type file_reader: callable :param file_reader: The function that will read the data from the file :type override_path: str or None :param override_path: If given, look for files in this directory rather than the one specified in the structure property :rtype: (`OrderedDict`, list) :return: Keys of the dict are `GridRadius` objects, values are the data extracted from the file for that set of Grid and Radius values. keys are orderd by (radius, grid) sort order. Each item of the list is a str that gives the path of a file that could not be located. """ data = {} failed_paths = [] paths = get_grid_radius_property_values(struct, propbase) for gridrad, path in paths.items(): # If override path is not provided and current path does not exist # Set the source path as the override path if not override_path and not os.path.exists(path): override_path = jobutils.get_source_path(struct) if override_path: filename = os.path.basename(path) path = os.path.join(override_path, filename) if not os.path.exists(path): failed_paths.append(path) continue filedata = file_reader(path) data[gridrad] = filedata keys = list(data) keys.sort(key=attrgetter('radius', 'grid')) ordered_data = OrderedDict([(x, data[x]) for x in keys]) return ordered_data, failed_paths
[docs]def read_volume_file(path): """ Read the void volume data file located at path :type path: str :param path: The path to the file :rtype: list :return: The volumes from the file, each item is a float """ with open(path, 'r') as volfile: volumes = [float(x.strip()) for x in volfile] return volumes
[docs]def read_trj_volume_file(path): """ Read the trajectory void volume data file located at path :type path: str :param path: The path to the file :rtype: dict :return: The volumes from the file where the key is the frame id and values are list of volume in that frame """ volumes = defaultdict(list) with open(path, 'r') as volfile: current_fid = None for line in volfile: line = line.strip() # Check if the line is comment line (frame id) or volume line if line.startswith(COMMENT_BIT): # User-facing frame indexes start at 1 not 0 current_fid = int(line.replace(COMMENT_BIT, '')) + 1 elif line: volumes[current_fid].append(float(line)) return volumes
[docs]def read_void_file(path): """ Read the void data file located at path :type path: str :param path: The path to the file :rtype: dict :return: Keys are INFO and VOIDS. INFO value is a `VoidInfo` object, VOIDS value is a list of `Void` objects sorted from largest to smallest. """ with open(path, 'r') as voidsfile: raw_data = json.load(voidsfile) void_data = {} void_data[INFO] = VoidInfo.fromJsonData(raw_data[INFO]) void_data[VOIDS] = [Void.fromJsonData(x) for x in raw_data[VOIDS]] # Load surface for voids where it is pre-calculated for void in void_data[VOIDS]: if void.surf_file: job_folder = os.path.dirname(path) surf_file = os.path.join(job_folder, void.surf_file) void.surf = surface.Surface.read(surf_file) else: void.surf = None void_data[VOIDS].sort(reverse=True) return void_data
[docs]def read_trj_void_file(path): """ Read the all frames void data files located inside the path :type path: str :param path: The path to the void files folder :rtype: dict :return: Dictionary where the key is the frame id and value is the void data for the frame. Void data is a dictionary where keys are INFO and VOIDS. INFO value is a `VoidInfo` object, VOIDS value is a list of `Void` objects sorted from largest to smallest. """ all_void_data = {} for _, _, files in os.walk(path): for filename in files: # Read only voids json files if not filename.endswith(VOIDS_FILE_ENDING): continue # filename will be like struct_name_g1.0_r1.2_trj5-voids.json trjname_bit = filename.split('_')[-1] fid_str = (trjname_bit.replace(TRJ_MIDFIX, '').replace(VOIDS_FILE_ENDING, '')) # User-facing frame indexes start at 1 not 0 fid = int(fid_str) + 1 all_void_data[fid] = read_void_file(os.path.join(path, filename)) return all_void_data
[docs]def get_volume_data(struct, path=None, read_trj=False): """ Get all the volume data available for the given structure :type struct: `schrodigner.structure.Structure` :param struct: The structure to get volume data for :type path: str or None :param path: If given, look for files in this directory rather than the one specified in the structure property :type read_trj: bool :param read_trj: Read trajectory analysis volume data if True, else will read the static structure analysis data. :rtype: (See read_volume_file or read_trj_volume_file function, list) :return: The volume data collected from struct, and a list of paths to files that could not be read """ read_method = read_trj_volume_file if read_trj else read_volume_file data, failures = get_file_data(struct, VOL_FILE_PROP, read_method, override_path=path) return data, failures
[docs]def get_voids_data(struct, path=None, read_trj=False): """ Get all the void data available for the given structure :type struct: `schrodigner.structure.Structure` :param struct: The structure to get volume data for :type path: str or None :param path: If given, look for files in this directory rather than the one specified in the structure property :type read_trj: bool :param read_trj: Read trajectory analysis void data if True, else will read the static structure analysis data. :rtype: (See read_void_file or read_trj_void_file function, list) :return: The volume data collected from struct, and a list of paths to the files that could not be read. """ read_method = read_trj_void_file if read_trj else read_void_file data, failures = get_file_data(struct, VOID_FILE_PROP, read_method, override_path=path) return data, failures
[docs]def create_surface_from_void(void, void_info): """ Create void surface :type void: `Void` :param void: The void to make a surface for :type void_info: `VoidInfo` :param void_info: The VoidInfo object for this void :rtype: `surface.Surface` :return: surface created using the void and void info """ # Each non zero grid point is a list of x,y,z,value, where value represents # the occupancy of the node in the grid. nonzero = [list(x) + [1.0] for x in void.nodes] # Create the surface raw_surf = surface.create_isosurface_from_grid_data( void_info.numxyz, void_info.spacing, void_info.origin, 0.5, nonzero=nonzero, surface_color=color.Color('pink'), name=void.surf_name, comment=void.surf_comment, surface_type='Free volume') return raw_surf
[docs]class JsonObject(object): """ Base class for custom objects that can be serialized and deserialized by json """
[docs] def jsonData(self): """ Return a json-serializable object for this instance :rtype: dict :return: A json-serializable object for this instance """ return self.__dict__
[docs] @classmethod def fromJsonData(cls, data): """ Create a new VoidInfo object from json data :type data: dict :param data: A dict such as returned by the jsonData method :rtype: class :return: A new class object created using the data in dict """ return cls(**data)
[docs]class VoidInfo(JsonObject): """ Holds general information about the void calculation """
[docs] def __init__(self, origin, numxyz, spacing, periodic, probe): """ Create a VoidInfo object :type origin: iterable :param origin: The x, y, z coordinates of the grid origin :type numxyz: iterable :param numxyz: The number of gridpoints in the x, y and z direction :type spacing: iterable :param spacing: The spacing of gridpoints in the x, y and z direction :type periodic: bool :param periodic: Whether the grid is periodic :type probe: float :param probe: The probe radius used in the void calculation """ self.origin = list(origin) self.numxyz = list(numxyz) self.periodic = bool(periodic) self.spacing = list(spacing) self.probe = probe
[docs] def getNodeXYZ(self, node): """ Get the xyz coordinates a node represents :type node: tuple :param node: A graph node (a, b, c) for coordinate a, b, c in the grid :rtype: list :return: [x, y, z] coordinates of the node """ return [self.origin[a] + self.spacing[a] * node[a] for a in range(3)]
[docs]@functools.total_ordering class Void(JsonObject): """ Holds information about a single Void """
[docs] def __init__(self, size=0, volume=0, nodes=None, surf_name=None, surf_comment=None, surf_file=None): """ Create a Void instance :type size: int :param size: The number of nodes in the void :type volume: float :param volume: The volume the void represents :type nodes: iterable :param nodes: The collection of grid nodes that make up the void :type surf_name: str :param surf_name: Name of the surface of the void :type surf_comment: str :param surf_comment: Comment for the surface of the void :type surf_file: str :param surf_file: Name of the surface file associated with the current void """ self.size = size self.volume = volume # We explicitly convert to tuples here because json serializes tuples as # lists and sometimes we create this class from json data. self.nodes = [tuple(x) for x in nodes] self.surf_name = surf_name self.surf_comment = surf_comment self.surf_file = surf_file
def __eq__(self, other): """ """ return self.size == other.size def __lt__(self, other): """ """ return self.size < other.size
[docs] def getSurfaceNodes(self, vinfo): """ Find all the surface nodes in the void :type vinfo: `VoidInfo` :param vinfo: The VoidInfo object used to compute the void """ surface = [] nodeset = set(self.nodes) for node in self.nodes: # Check each of six neighbors to see if they exist, If any neighbor # does not exist, this is a surface node. for neighbor in amorphous.XYZVolumeGraph.gridNeighbors( node, vinfo.numxyz, vinfo.pbc): if neighbor not in nodeset: break surface.append(node) return surface
[docs]class FreeVolumeException(Exception): """ Raised if something goes wrong with computing the Free Volume """
[docs]class FreeVolumeDriver(object): """ Driver to compute Free Volume """
[docs] def __init__(self, grid=SPACING, probe=PROBE_RADIUS, generic_title=GENERIC_TITLE, logger=None, verbose=True, only_large_void_surf=True): """ Create a FreeVolumeDriver instance :type grid: float :param grid: The requested grid spacing :type probe: float :param probe: The probe radius :type generic_title: str :param generic_title: The title to use if a structure does not have one :type logger: None or `logging.logger` :param logger: If None, no logging will be done and FreeVolumeException will be raised if an error occurs. If a logger, logging will be done and the system will exit on an error. :type verbose: bool :param verbose: Turns on additional logging :type only_large_void_surf: bool :param only_large_void_surf: Will calculate surface of all voids if True. If case of False it will calculate surface of voids with volume greater than 1 A^3. """ self.grid = grid self.probe = probe self.logger = logger self.verbose = verbose self.cleaner = jobutils.StringCleaner() self.voids = [] self.struct = None self.void_count = 0 self.smallest_void = sys.maxsize self.largest_void = 0 self.fid = None self.only_large_void_surf = only_large_void_surf
[docs] def log(self, msg, is_verbose=False, **kwargs): """ Log a message if logging is being used :type msg: str :param msg: The message to log Additional keyword arguments are passed to `textlogger.log_msg` """ if is_verbose and not self.verbose: return if self.logger: if not self.verbose: kwargs['pad'] = False kwargs['logger'] = self.logger textlogger.log_msg(msg, **kwargs)
[docs] def logError(self, msg, **kwargs): """ Log an error message if logging is being used and exit, otherwise raise an Exception. :type msg: str :param msg: The message to log Additional keyword arguments are passed to `textlogger.log_error` :raise FreeVolumeException: if self.logger :raise SystemExit: if not self.logger """ if self.logger: kwargs['logger'] = self.logger textlogger.log_error(msg, **kwargs) else: raise FreeVolumeException(msg)
[docs] def findFreeVolume(self, struct): """ Find the free volume in the structure. Results are stored as properties on the structure :type struct: `schrodinger.structure.Structure` :param struct: The structure to find the free volume in :raise FreeVolumeException: if the PBC dimensions are too small or memory usage grows too large and no logger exists :raise SystemExit: if the PBC dimensions are too small or memory usage grows too large and a logger exists """ self.log('Dividing system using grid spacing of %.2f...' % self.grid, pad=True) self.graph = amorphous.XYZVolumeGraph(struct, spacing=self.grid) spacing = self.graph.xyz_spacings self.volume_per_node = spacing[0] * spacing[1] * spacing[2] self.log('Grid spacing adjusted to partition space equally.', is_verbose=True) self.log( 'Requested spacing: %.2f, actual spacing: %.2fx, %.2fy, %.2fz' % (self.grid, spacing[0], spacing[1], spacing[2]), is_verbose=True) self.log('Finding points not occupied by atoms...') if self.verbose: plogger = self.logger else: plogger = None # Check to ensure that the PBC is large enough for the probe if self.graph.pbc: dcell_distance = self.graph.getDistanceCellDistance( struct, self.probe) lengths = self.graph.pbc.getBoxLengths() minlen = min(lengths) if minlen <= dcell_distance: allowed_probe = minlen - dcell_distance + self.probe if allowed_probe <= 0.0: ending = 'too small for a free volume calculation.' else: ending = ('too small for a probe radius of %.3f. Use a ' 'probe radius smaller than %.4f.' % (self.probe, allowed_probe)) self.logError('The minimum dimension of the system periodic ' 'boundary condition is %.3f, which is %s' % (minlen, ending)) try: self.graph.locateVoids(probe=self.probe, logger=plogger) except amorphous.VolumeMemoryError as msg: self.logError(str(msg)) self.total_volume = self.volume_per_node * self.graph.total_points self.log('Gridded volume of entire system = %.3f A^3' % self.total_volume) self.struct = struct try: self.defineVoids() except amorphous.VolumeMemoryError as msg: self.logError(str(msg))
[docs] def getVoidVolumes(self): """ Get the volume of each void :rtype: list :return: A list of void volumes. Each item is a float. """ return [x.volume for x in self.voids]
[docs] def getPropName(self, propbase): """ Get the property name with grbit for the class added as a suffix to the passed property base name. :type propbase: str :param propbase: the property basename (prefix) to add the grbit to :rtype: str :return: property name with grbit added to it """ grbit = GRID_RAD_BIT % (self.grid, self.probe) return propbase + grbit
[docs] def getFreeVolumeData(self): """ Calculate the absolute free volume and free volume percentage from the analyzed graph :rtype: (float, float) :return: Tuple with two values. First is the absolute free volume and second is the free volume percentage. """ free_volume = self.volumeOfGraph() pct_volume = 100 * free_volume / self.total_volume return free_volume, pct_volume
[docs] def defineVoids(self): """ Define all the voids found in the structure """ self.voids = [] self.void_count = 0 self.log('Defining voids...') for void in self.graph.voids(): num_nodes = len(void) volume = num_nodes * self.volume_per_node this_void = Void(num_nodes, volume, void) self.voids.append(this_void) self.void_count += 1 if self.void_count: self.largest_void = self.voids[0] self.smallest_void = self.voids[-1] self.log('Found %d voids' % self.void_count, pad=True, is_verbose=True) if self.void_count: self.log('Largest void: %.2f' % self.largest_void.volume) self.log('Smallest void: %.2f' % self.smallest_void.volume, is_verbose=True) free_volume, pct_volume = self.getFreeVolumeData() self.log('Free volume = %.2f A^3' % free_volume) self.log('Free volume percent = %.2f%%' % pct_volume) self.struct.property[self.getPropName(FREE_VOLUME_PROP)] = free_volume self.struct.property[self.getPropName( FREE_VOLUME_PCT_PROP)] = pct_volume
[docs] def volumeOfGraph(self): """ Get the current total volume of the graph :rtype: float :return: The volume of all the remaining nodes in the graph """ return self.volume_per_node * len(self.graph.graph)
[docs] def getVoidData(self, voids_filename, archive_data=True): """ Get the void data from the current analysis :type voids_filename: str :param voids_filename: name of the voids json file :type archive_data: bool :param archive_data: whether to archive void data. Archiving helps transferring of files easier. :rtype: dict :return: Keys are INFO and VOIDS. INFO value is a `VoidInfo` object, VOIDS value is a list of `Void` objects sorted from largest to smallest. """ # Get void info void_info = VoidInfo(self.graph.shifted_origin, self.graph.num_xyz, self.graph.xyz_spacings, bool(self.graph.pbc), self.probe) # Make folder to hold all surface viz files basename = voids_filename.replace(VOIDS_FILE_ENDING, '') surf_folder = basename + SURF_FILE_FOLDER fileutils.force_rmtree(surf_folder, True) os.makedirs(surf_folder) # Create surfaces for all voids self.createSurfaces(self.voids, void_info, surf_folder) if archive_data: # Zip surface files for faster transfer tar_file = surf_folder + TAR_ENDING archive_folder(tar_file, surf_folder) # Store data void_data = { INFO: void_info.jsonData(), VOIDS: [x.jsonData() for x in self.voids] } return void_data
[docs] def createSurfaces(self, voids, void_info, surf_folder): """ Create a surfaces for voids larger than 1 A^3 and store them inside surf folder. Also set the name, comment, and location of the created surface file for the void as an attribute in the void. :type void: `Void` :param void: The void to make a surface for :type void_info: `VoidInfo` :param void_info: The VoidInfo object for this void :type surf_folder: str :param surf_folder: Folder to store all the surface files inside """ vol_sa_vals = [] for index, void in enumerate(voids): void_volume = void.volume # Set surface name and comment if self.fid is None: name = SURF_NAME % (void_volume, self.probe, self.grid, index) else: name = SURF_TRJ_NAME % (void.volume, self.probe, self.grid, self.fid, index) void.surf_comment = SURF_COMMENT % (self.probe, self.grid) void.surf_name = name # Calculate surface only when volume is larger than 1A if void.volume > 1.0 or not self.only_large_void_surf: raw_surf = create_surface_from_void(void, void_info) filename = f'surface_{index}{SURF_FILE_ENDING}' void.surf_file = os.path.join(surf_folder, filename) raw_surf.write(void.surf_file) vol_sa_vals.append((void.volume, raw_surf.surface_area)) else: void.surf_file = None # Write surface areas for voids, this is not used by the viewer if vol_sa_vals: numpy.savetxt(os.path.join(surf_folder, 'surface_area.csv'), vol_sa_vals, header='Volume SurfaceArea')
[docs] def writeFiles(self, basename=None): """ Write all the data to files The actual node graph is written to a pkl file The void data is written to a json file The volumes are written to a simple text file, one volume per line The structure is written to a Maestro file :type basename: str :param basename: Use this instead of the structure title as the base file name :rtype: str, str, str :return: The paths to the files written (volume file, void file, graph file) """ names = self._formFileNamesAndProps(basename) volume_name, voids_name, mae_name = names # Volume file with open(volume_name, 'w') as volfile: for void in self.voids: volfile.write(str(void.volume) + '\n') self.log('Void volumes written to %s' % volume_name, is_verbose=True) # Void file void_data = self.getVoidData(voids_name) with open(voids_name, 'w') as voidfile: json.dump(void_data, voidfile) self.log('Clusters written to %s' % voids_name, is_verbose=True) # MAE file fileutils.force_remove(mae_name) self.struct.write(mae_name) self.log('Structure written to %s' % mae_name, is_verbose=True) return volume_name, voids_name, mae_name
[docs] def getBasename(self): """ Get the basename from the structure :rtype: str :return: basename from structure title or the generic name cleaned and uniquified. """ return self.cleaner.cleanAndUniquify(self.struct.title or GENERIC_TITLE)
def _formFileNamesAndProps(self, basename): """ Form the file and structure property names for this instance of the driver and then store the paths to these files in the structure properties. :type basename: str or None :param basename: If not None, Use this instead of the structure title as the base file name :rtype: (str, str, str, str) :return: The names of the volume file, void file, graph file and Maestro file """ volprop = self.getPropName(VOL_FILE_PROP) voidprop = self.getPropName(VOID_FILE_PROP) maeprop = MAE_FILE_PROP jobutils.set_source_path(self.struct) if not basename: basename = self.getBasename() volfile = self.getPropName(basename) + VOL_FILE_ENDING voidfile = self.getPropName(basename) + VOIDS_FILE_ENDING maefile = basename + MAE_FILE_ENDING self.struct.property[volprop] = volfile self.struct.property[voidprop] = voidfile self.struct.property[maeprop] = maefile return volfile, voidfile, maefile
[docs] def clearGraph(self): """ Clear out the graph for this driver to preserve memory space """ self.graph = None