Source code for schrodinger.graphics3d.sphere

"""
Maestro 3D spheres.

The sphere module allows creation and drawing of spheres.  Clients draw using
Group instances not through Sphere instances.

Control over the center, radius, color, resolution and opacity of a sphere are
provided. See the Sphere class for more info.

To draw any number of spheres, create the Sphere instance and add it to a Group
instance. Then invoke the Group's draw() method.

Copyright Schrodinger, LLC. All rights reserved.

"""

import schrodinger

from . import common
from .common import OPACITY_MAX
from .common import OPACITY_MIN
from .common import TRANSPARENCY_MAX
from .common import TRANSPARENCY_MIN
from .common import Group

# NOTE: SphereGroup is deprecated; use Group class.
SphereGroup = Group

maestro = schrodinger.get_maestro()

RESOLUTION_MIN = 4
RESOLUTION_MAX = 50
RESOLUTION_DEFAULT = 16

TRANSPARENCY_DEFAULT = 0.0  # for backwards-compatibility
OPACITY_DEFAULT = 1.0

# Constants used to calculate bounding box:
BOUNDING_BOX_INIT_VALUE = 100000000.0

#############################################################################
#                              CLASSES                                      #
#############################################################################


[docs]class SphereCore(common.Primitive): """ Base class for Sphere and MaestroSphere classes. See doc string for __init__ for details on instantiation. Spheres should be added to a SphereGroup and drawing done via SphereGroup. See SphereGroup documentation. """ _blend = None _smooth_point = None _cull = None _lighting = None _lighting_model = None _shading_model = None
[docs] def __init__( self, x=None, y=None, z=None, color=None, r=None, g=None, b=None, # for backwards-compatability radius=None, transparency=None, # for backwards-compatability opacity=OPACITY_DEFAULT, resolution=RESOLUTION_DEFAULT): """ Constructor requires: x, y, z: coordinate specifying center of sphere in Angstroms. color: One of: Color object Color name (string) Tuble of (R, G, B) (each 0.0-1.0) radius: radius of the sphere in Angstroms Optional arguments: opacity: 0.0 (transparent) through 1.0 (opaque) Defaults to 1.0 resolution: 4 to 50 Defaults to 16 """ if x is None or y is None or z is None: raise ValueError( "Must specify x, y and z values to define the sphere center") elif radius is None: raise ValueError("Must specify a value for radius") else: self.x = x self.y = y self.z = z self.radius = radius if color is not None: self.r, self.g, self.b = common.color_arg_to_rgb(color) elif r is not None and g is not None and b is not None: # for backwards-compatability self.r = float(r) self.g = float(g) self.b = float(b) else: raise ValueError("Must specify a color") # Clamp to range of 0.0 and 1.0, inclusive if transparency is not None: # for backwards-compatability if transparency < TRANSPARENCY_MIN: self.opacity = OPACITY_MAX elif transparency > TRANSPARENCY_MAX: self.opacity = OPACITY_MIN else: self.opacity = 1.0 - transparency else: # Use opacity if opacity < OPACITY_MIN: self.opacity = OPACITY_MIN elif opacity > OPACITY_MAX: self.opacity = OPACITY_MAX else: self.opacity = opacity # Clamp the resolution if resolution < RESOLUTION_MIN: self.resolution = RESOLUTION_MIN elif resolution > RESOLUTION_MAX: self.resolution = RESOLUTION_MAX else: self.resolution = resolution return
def _calculateBoundingBox(self, mat): xyzmin = [] xyzmax = [] for k in range(6): xyzmin.append(BOUNDING_BOX_INIT_VALUE) xyzmax.append(-BOUNDING_BOX_INIT_VALUE) vertex = [] vertex.append( (self.x - self.radius, self.y - self.radius, self.z + self.radius)) vertex.append( (self.x + self.radius, self.y - self.radius, self.z + self.radius)) vertex.append( (self.x + self.radius, self.y + self.radius, self.z + self.radius)) vertex.append( (self.x - self.radius, self.y + self.radius, self.z + self.radius)) vertex.append( (self.x - self.radius, self.y - self.radius, self.z - self.radius)) vertex.append( (self.x + self.radius, self.y - self.radius, self.z - self.radius)) vertex.append( (self.x + self.radius, self.y + self.radius, self.z - self.radius)) vertex.append( (self.x - self.radius, self.y + self.radius, self.z - self.radius)) tmp = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] for i in range(8): for k in range(3): tmp[k + 3] = vertex[i][k] tmp[0] = mat[0][0] * tmp[3] + mat[0][1] * tmp[4] + mat[0][2] * tmp[ 5] + mat[0][3] tmp[1] = mat[1][0] * tmp[3] + mat[1][1] * tmp[4] + mat[1][2] * tmp[ 5] + mat[1][3] tmp[2] = mat[2][0] * tmp[3] + mat[2][1] * tmp[4] + mat[2][2] * tmp[ 5] + mat[2][3] for k in range(6): if xyzmin[k] > tmp[k]: xyzmin[k] = tmp[k] if xyzmax[k] < tmp[k]: xyzmax[k] = tmp[k] return (xyzmin, xyzmax)
[docs]class MaestroSphere(common._MaestroPrimitiveMixin, SphereCore): """ Class to create a 3D sphere in Maestro. This sphere will be drawn at the appropriate time in Maestro to interact properly with transparent objects. Spheres should be added to a Group and drawing done via the Group. See Group documentation. API Example:: import schrodinger.maestro.maestro as maestro import schrodinger.graphics3d.common as common import schrodinger.graphics3d.sphere as sphere sphere_grp = common.Group() st = maestro.workspace_get() for at in st.atom: sph = sphere.MaestroSphere( x=at.x, y=at.y, z=at.z, radius=1.0, resolution=20, opacity=0.8, color='red' ) # Add the primative to the container. sphere_grp.add(sph) # Unlike Sphere MaestroSphere simply needs to be shown to be drawn. # No special callback like there is for Spheres is needed. sphere_grp.show() # Hide the markers. sphere_grp.hide() # Remove the markers and the callback. sphere_grp.clear() maestro.workspace_draw_function_remove(sphere_grp.draw) """
[docs] def __init__( self, x=None, y=None, z=None, color=None, r=None, g=None, b=None, # for backwards-compatability radius=None, transparency=None, # for backwards-compatability opacity=OPACITY_DEFAULT, resolution=RESOLUTION_DEFAULT, angle_dep_transparency=False): """ Constructor requires: x, y, z: coordinate specifying center of sphere in Angstroms. color: One of: Color object Color name (string) Tuple of (R, G, B) (each 0.0-1.0) radius: radius of the sphere in Angstroms Optional arguments: opacity: 0.0 (transparent) through 1.0 (opaque) Defaults to 1.0 resolution: 4 to 50 Defaults to 16 """ self.sphere = None self._x = 0 self._y = 0 self._z = 0 self._radius = 0 SphereCore.__init__(self, x, y, z, color, r, g, b, radius, transparency, opacity, resolution) self.angle_dep_transparency = angle_dep_transparency self.sphere = maestro.create_sphere(self.x, self.y, self.z, self.r, self.g, self.b, self.radius, self.opacity, self.resolution, self.angle_dep_transparency) maestro_objects = [self.sphere] common.Primitive.__init__(self, maestro_objects)
# Helper functions
[docs] def setCoords(self): if self.sphere: maestro.set_coords(self.sphere, self._x, self._y, self._z)
[docs] def setXYZCoords(self, x, y, z): self._x = x self._y = y self._z = z self.setCoords()
# Accessors def _getX(self): return self._x def _setX(self, value): self._x = value self.setCoords() def _getY(self): return self._y def _setY(self, value): self._y = value self.setCoords() def _getZ(self): return self._z def _setZ(self, value): self._z = value self.setCoords() def _getRadius(self): return self._radius def _setRadius(self, value): self._radius = value if self.sphere: maestro.set_radius(self.sphere, self._radius) x = property(_getX, _setX, doc="X coordinate") y = property(_getY, _setY, doc="Y coordinate") z = property(_getZ, _setZ, doc="Z coordinate") radius = property(_getRadius, _setRadius, doc="Sphere's radius")