Introducing PyMOL 3: Bring your biochemistry to life with 3D molecular visualization and movie making

Introducing PyMOL 3: Bring your biochemistry to life with 3D molecular visualization and movie making

Join us for an introduction to PyMOL 3, the latest advancement in 3D molecular visualization and animation software.

PyMOL has long been the preferred choice of hundreds of thousands of scientists worldwide for its unparalleled visualization quality, speed, and flexibility.

With PyMOL 3, we’re taking molecular visualization to new heights – empowering scientists, educators, marketers, and communicators to bring their science to life.

Key Highlights:

  • Watch a live demonstration of PyMOL 3 and Q&A hosted by the developers
  • Explore the enhancements to the graphical user interface
  • Learn how to load in a structure, make changes to the styling, and export a ray traced image
  • Produce a simple movie by creating and organizing scenes using the new Scenes Panel and Timeline
  • See examples of stunning graphics and videos created using PyMOL 3

Our Speakers

Thomas Stewart

Developer II, PyMOL, Schrödinger

Thomas Stewart is a developer and product manager on the PyMOL team at Schrödinger, where he has worked since 2020. His recent efforts have focused on the implementation of several new features offered in PyMOL 3, including the improved graphical user interface (GUI), the scenes panel, and the presets panel. He obtained his master’s degree in Biomedical Engineering from the University of Michigan.

Jarrett Johnson, Ph.D.

Senior Developer II, PyMOL, Schrödinger

Jarrett Johnson is the principal developer and technical lead for the PyMOL project. He joined Schrödinger in 2018, after a decade of experience as a PyMOL advocate and user. Jarrett received his Ph.D. from the University of Michigan where he studied and authored computational protein structure prediction and design algorithms. His major contributions to PyMOL include multiple-level undo and the implementation of the Timeline, the new movie maker introduced in version 3.0.

Schrödinger workshop & presentation: Advanced computational tools for small molecule drug discovery

Workshop

Schrödinger presentation & workshop: Advanced computational tools for small molecule drug discovery

CalendarDate & Time
  • May 23rd-23rd, 2024
LocationLocation
  • Paris, France
Register

We are pleased to invite you to join Schrödinger’s Small Molecule Drug Discovery Workshop & Presentation on May 23, 2024 in the heart of Paris at Espace Vinci, 25 Rue des Jeuneurs, 75002 Paris. This event is intended for R&D scientists to gain new insights into the latest technologies for structure-based drug discovery.

Join us to explore advanced workflows for ultra-large virtual screening and de novo compound design, learn from a successful case study, and gain practical skills using Schrödinger’s computational platform to enhance your drug discovery projects.

Scientific presentation

  • Find better molecules, faster: Unlocking ultra-large chemical spaces for hit identification and lead optimization
    • Introduction to advanced workflows for ultra-large virtual screening and de novo compound design
    • Case study: Ultra-large virtual screening campaign

Design challenge

  • Participants will have the opportunity to design, computationally assess, and prioritise novel CDK2 inhibitors

Hands-on molecular modelling workshop

  • Gain practical molecular modelling experience by performing docking-based virtual screening on a target protein

Agenda

Our speakers

Steven Jerome

Senior Director, Schrödinger

Carlos Roca Magadán

Senior Scientist Molecular Modeling, Galapagos

Register

Schrödinger Workshops: Accelerating Organic Electronics R&D with Digital Simulations and Enterprise Informatics

Conference

Schrödinger workshops: Accelerating organic electronics R&D with digital simulations and enterprise informatics

CalendarDate & Time
  • May 14th-16th, 2024
LocationLocation
  • San Jose, California

Join us for a free workshop day on May 15th at SID Display Week 2024 in Meeting Room 213. Schrödinger experts will walk you through guided demos and help you gain hands-on experience using digital simulations to expedite your organic electronics R&D.

Note that several sessions are repeated throughout the day. Each session is standalone, so you may register for one or all sessions. No prior computational experience is needed. Space is limited.

Please bring your laptop for hands-on workshop sessions. 

Venue Map

Schrödinger Workshops: Accelerating Organic Electronics R&D with Digital Simulations and Enterprise Informatics

Beyond AI: The importance of physics-based simulations in next generation food design webinar

Webinar

Beyond AI: The importance of physics-based simulations in next generation food design webinar

CalendarDate & Time
  • May 9th-9th, 2024
  • 12:00 PM – 12:30 PM CT
LocationLocation
  • Virtual

Schrödinger will be presenting in a live webinar on Beyond AI: The importance of physics-based simulations in next generation food design. This virtual event will be hosted by IFT (Institute of Food Technologists) on May 9th and features Dr. Jeffrey Sanders, product manager at Schrödinger.

Attend this webinar and learn:

  • How to leverage data from physics-based simulations and machine learning to accelerate food R&D
  • Practical examples and case studies that impact food product development
  • To explore key areas in your R&D where physics-based simulation and machine learning can provide value

Dr. Jeffrey Sanders

Product Manager

Jeff Sanders received his B.S. in applied physics from Worcester Polytechnic Institute and then his Ph.D. in biophysics and molecular pharmacology from Thomas Jefferson Medical College. Since joining Schrödinger in 2013, he has served several roles and is currently the product manager and scientific lead for the consumer packaged goods applications group. Additionally, he is a managing board member of the Food Engineering, Expansion, and Development (FEED) institute and holds an adjunct position in the department of food science at University of Massachusetts, Amherst.

Overview

With the rise in utility and access to artificial intelligence (AI) solutions in everyday life, the food industry is searching for practical use cases to leverage its power. While some claim AI will render traditional research and development in the food industry obsolete, the paradigm shift has yet to come to fruition. In order for a digital transformation of such scale to occur, data will become the key driver.

In food science, data collection is often sparse, or is collected at the macroscopic scale with little insight to the underlying physical and chemical driving forces. Unlike AI (also called machine learning), physics-based simulation is able to generate data based on realistic computational models of food products, processing, and packaging materials. The data generated is interpretable, allowing researchers and engineers to make informed decisions before embarking on costly experimental testing. By leveraging data generated from physics-based simulations at the molecular level combined with existing experimental data where available, machine learning models can then be generated overcoming the data sparsity issue often encountered. More importantly, physics-based simulations can help researchers develop models that are both interpretable and testable.

In this talk, we will explore how physics-based simulations are used in food research and the synergy that can be achieved when they are combined with machine learning models.