A powerful and innovative package for accurate protein structure predictions

The Advantages of Accurate Receptor Models

Rational drug design has proven to be an effective and cost-saving approach to drug development. Lead discovery using virtual screening and lead optimization through detailed understanding of ligand-receptor interactions are now indispensable components of pharmaceutical research. An accurate model of the receptor, particularly of the active site, is central to all structure-based drug design efforts. While the recent explosion in genomic data has elucidated many protein sequences, there remain many pharmaceutically relevant targets for which no accurate 3D model exist.

An accurate protein structure prediction can not only provide a model where an experimental structure is unavailable, but can also refine experimental structures obtained through X-ray crystallography or NMR, providing an even more accurate and detailed starting point for subsequent simulations and computational analyses.

Unmatched accuracy:
Prime combines improved science with new methods and algorithms to provide the highest accuracy in predicted structures.

Advanced simulation:
Prime's ligand-induced fit analysis refines active site geometries in the presence of ligands. Induced-fit modeling simulates flexibility of protein targets and identifies alternate binding modes of different ligand chemotypes.

Full integration:
Prime incorporates homology modeling and fold recognition into one package. Comparative modeling is used to generate accurate homology models for further structure-based studies. Threading and fold recognition techniques are used to create backbone models for early structural investigations or functional annotation in cases of low or no-sequence identity.

Easy-to-use interface:
Prime includes an intuitive step-by-step interface that takes a novice user through the workflow of structure prediction by supplying helpful default settings for each stage of the process. At the same time, Prime allows the expert user to specify and adjust parameters to optimize the quality of predictions. The Maestro interface provides additional structural and sequence visualization and analyses tools.

Citations and Acknowledgements

Schrödinger Release 2021-4: Prime, Schrödinger, LLC, New York, NY, 2021.

ö Jacobson, M. P.; Pincus, D. L.; Rapp, C. S.; Day, T. J. F.; Honig, B.; Shaw, D. E.; Friesner, R. A., "A Hierarchical Approach to All-Atom Protein Loop Prediction," Proteins: Structure, Function and Bioinformatics, 2004, 55, 351-367

ö Jacobson, M. P.; Friesner, R.A.; Xiang, Z.; Honig, B., "On the Role of Crystal Packing Forces in Determining Protein Sidechain Conformations," J. Mol. Biol., 2002, 320, 597-608

ö "A Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein-Ligand Binding"

Miller, E.; Murphy, R.; Sindhikara, D.; Borrelli, K.; Grisewood, M.; Ranalli, F.; Dixon, S.; Jerome, S.; Boyles, N.; Day, T.; Ghanakota, P.; Mondal, S.; Rafi, S.B.; Troast, D.M.; Abel, R.; Friesner, R.A., ChemRxiv, 2020, Preprint, 1

ö "Relative Binding Affinity Prediction of Charge-Changing Sequence Mutations with FEP in Protein–Protein Interfaces"

Clark, A.J.; Negron, C.; Hauser, K.; Sun, M.; Wang, L.; Abel, R.; Friesner, R.A., Journal of Molecular Biology, 2019, ,

ö "High throughput evaluation of macrocyclization strategies for conformer stabilization"

Sindhikara, D. and Borrelli, K., Nature, Scientific Reports , 2018, 8 (6585), doi:10.1038/s41598-018-24766-5

ö "Investigating Protein–Peptide Interactions Using the Schrödinger Computational Suite"

Bhachoo, J.; Beuming, T., Methods Mol Biol., 2017, 1561, 235-254

ö "Improving Accuracy, Diversity, and Speed with Prime Macrocycle Conformational Sampling"

Sindhikara, D.; Spronk, S.A.; Day, T.; Borrelli, K.; Cheney, D.L.; Posy, S.L., J. Chem. Inf. Model., 2017, 57 (8), 1881–1894

ö "Free Energy Perturbation Calculation of Relative Binding Free Energy between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of HIV-1"

Clark, A.J.; Gindin, T.; Zhang, B.; Wang, L.; Abel, R.; Murret, C.S.; Xu, F.; Bao, A.; Lu, N.J.; Zhou, T.; Kwong, P.D.; Shapiro, L.; Honig, B.; Friesner, R.A. , J. Mol. Biol., 2016, 16, 30516-2

ö "Relative Binding Free Energy Calculations Applied to Protein Homology Models"

Cappel, D.; Hall, M.L.; Lenselink, E.B.; Beuming, T.; Qi, J.; Bradner, J.; Sherman, W., J. Chem. Inf. Model., 2016, 56 (12), 2388–2400

ö "Predicting Binding Affinities for GPCR Ligands Using Free-Energy Perturbation"

Lenselink, E.B.; Louvel, J.; Forti, A.F.; van Veldhoven, J.P.D.; de Vries, H.; Mulder-Krieger, T.; McRobb, F.M.; Negri, A.; Goose, J.; Abel, R.; van Vlijmen, H.W.T.; Wang, L.; Harder, E.; Sherman, W.; IJzerman, A.P.; Beuming, T., ACS Omega, 2016, 1, 293-304

ö "Docking covalent inhibitors: A parameter free approach to pose prediction and scoring"

Zhu, K.; Borrelli, K.W.; Greenwood, J.R.; Day, T.; Abel, R.; Farid, R.S.; Harder, E., J. Chem. Inf. Model., 2014, 54, 1932−1940

ö "Antibody Structure Determination Using a Combination of Homology Modeling, Energy-Based Refinement, and Loop Prediction"

Zhu, K.; Day, T.; Warshaviak, D.; Murrett, C.; Friesner, R.; Pearlman, D., Proteins, 2014, 82(8), 1646–1655

ö "Physics-Based Enzyme Design: Predicting Binding Affinity and Catalytic Activity"

Sirin, S.; Pearlman, D.A.; Sherman, W., Proteins, 2014, 82(12), 3397-409

ö "A Structure-Based Virtual Screening Approach for Discovery of Covalently Bound Ligands"

Toledo Warshaviak, D.; Golan, G.; Borrelli, K.W.; Zhu, K.; Kalid, O., J. Chem. Inf. Model, 2014, 54(7), 1941–1950

ö "A Computational Approach to Enzyme Design: Predicting ω-Aminotransferase Catalytic Activity Using Docking and MM-GBSA Scoring"

Sirin, S.; Kumar, R.; Martinez, C.; Karmilowicz, M.J.; Ghosh, P.; Abramov, Y.A.; Martin, V.; Sherman, W., J. Chem. Inf. Model., 2014, 54(8), 2334-2346

ö "Ab initio structure prediction of the antibody hypervariable H3 loop"

Zhu, K.; Day, T., Proteins, 2013, 81(6), 1081-1089

ö "Improved docking of polypeptides with Glide"

Tubert-Brohman, I.; Sherman, W.; Repasky, M.; Beuming, T., J. Chem. Inf. Model., 2013, 53(7), 1689-1699

ö "Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein-protein complexes"

Beard, H.; Cholleti, A.; Pearlman, D.; Sherman, W.; Loving, K.A., PLoS ONE, 2013, 8(12), e82849

"The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation"

Zhang, Y.J.; Caulfield, T.R.; Xu, Y.F.; Gendron, T.F.; Hubbard, J.; Stetler, C.; Sasaguri, H.; Whitelaw, E.C.; Cai, S.; Lee, W.C.; Petrucelli, L., Hum. Mol. Genet., 2013, 22(15), 3112-3122

ö "Prediction of Long Loops with Embedded Secondary Structure Using the Protein Local Optimization Program"

Miller, E.B.; Murrett, C.S.; Zhu, K.; Zhao, S.; Goldfeld, D.A.; Bylund, J.H.; Friesner, R.A., J. Chem. Theory Comput., 2013, 9(3), 1846–1864

ö "Consensus Induced Fit Docking (cIFD): Methodology, validation, and application to the discovery of novel Crm1 inhibitors"

Kalid, O.; Warshaviak, D.T.; Shechter, S.; Sherman, W.; Shacham, S., J. Comput. Aided Mol. Des., 2012, 26, 1217–1228

"A molecular mechanics approach to modeling protein–ligand interactions: Relative binding affinities in congeneric series"

Rapp, C.; Kalyanaraman, C.; Schiffmiller, A.; Schoenbrun, E.L.; Jacobson, M.P., J. Chem. Inf. Model., 2011, 51(9), 2082-2089

ö "Successful prediction of the intra- and extracellular loops of four G-protein-coupled receptors"

Goldfeld, D.A.; Zhu, K.; Beuming, T.; Friesner, R.A., PNAS, 2011, 108(20), 8275-8280

"Further Characterization of the [Fe-Fe]-Hydrogenase Maturase  HydG"

Tron, C.; Cherrier, M.V.; Amara, P.; Martin, L.; Fauth, F.; Fraga, E. et al., Eur. J. Inorg. Chem., 2011, 7, 1121–1127

"Closing the side-chain gap in protein loop modeling"

Rossi, K. A.; Nayeem, A.; Weigelt, C. A.; Krystek Jr., S. R., J. Comput. Aided Mol. Des., 2009, 23, 411-418

ö "Towards better refinement of comparative models: predicting loops in inexact environments"

Sellers, B. D.; Zhu, K.; Zhao, S.; Friesner, R. A.; Jacobson, M. P., Proteins, 2008, 72, 959-971

"Exploring Structural Variability in X-Ray Crystallographic Models Using Protein Local Optimization by Torsion-Angle Sampling"

Knight, J. L.; Zhou, Z.; Gallicchio, E.; Himmel, D. M.; Friesner, R. A.; Arnold, E.; Levy, R. M., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2008, 64, 383-396

"Prediction and assignment of function for a divergent N-succinyl amino acid racemase"

Song, L.; Kalyanaraman, C.; Federov, A. A.; Federov, E. V.; Glasner, M. E.; Brown, S.; Babbitt, P. C.; Almo, S. C.; Jacobson, M. P.; Gerlt, J. A., Nature Chemical Biology, 2007, 3, 486-491

ö "Improved Methods for Side Chain and Loop Predictions via the Protein Local Optimization Program: Variable Dielectric Model for Implicitly Improving the Treatment of Polarization Effects"

Zhu, K.; Shirts, M. R.; and Friesner, R. A., J. Chem. Theory Comput., 2007, 3, 2108-2119

"Loopholes and missing links in protein modeling"

Rossi, K. A.; Weigelt, C. A.; Nayeem, A.; Krystek, S. R., Protein Sci., 2007, 16, 1999-2012

"Homology models of dipeptidyl peptidases 8 and 9 with a focus on loop predictions near the active site"

Rummey, C.; Metz, G., Proteins: Structure, Function, and Bioinformatics, 2007, 66, 160-171

ö "Assignment of Polar States for Protein Amino Acid Residues Using an Interaction Cluster Decomposition Algorithm and its Application to High Resolution Protein Structure Modeling"

Li, X.; Jacobson, M. P.; Zhu, K.; Zhao, S.; Friesner, R. A., Proteins: Structure, Function, and Bioinformatics, 2007, 66, 824-837

ö "Multiscale Optimization of a Truncated Newton Minimizer and Application to Proteins and Protein-Ligand Complexes"

Zhu, K.; Shirts, M. R.; Friesner, R. A.; Jacobson, M. P., J. Chem. Theory Comput., 2007, 3, 640-648

ö "Long Loop Prediction Using the Protein Local Optimization Program"

Zhu, K.; Pincus, D. L.; Zhao, S.; Friesner, R. A., Proteins: Structure, Function, and Bioinformatics, 2006, 65, 438-452

"Molecular mechanics methods for predicting protein-ligand binding"

Huang, N.; Kalyanaraman, C.; Bernacki, K.; Jacobson, M. P., Phys. Chem. Chem. Phys., 2006, 8, 5166-5177

ö "What role do surfaces play in GB models? A new generation of surface-generalized Born model based on a novel Gaussian surface for biomolecules"

Yu, Z.; Jacobson, M. P.; Friesner, R. A., J. Comp. Chem., 2006, 27, 72-89

"Conformational Changes in Protein Loops and Helices Induced by Post-Translational Phosphorylation"

Groban, E. S.; Narayanan, A.; Jacobson, M. P., PLoS Computational Biology, 2006, 2, 238-250

"Accurate Prediction of the Relative Potencies of Members of a Series of Kinase Inhibitors Using Molecular Docking and MM-GBSA Scoring"

Lyne, P. D.; Lamb, M. L.; Saeh, J. C., J. Med. Chem., 2006, 49, 4805-4808

"Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: Successful in silico prediction of the relative permeabilities of cyclic peptides"

Rezai, T.; Bock, J. E.; Vong, M.; Lokey, R. S.; Jacobson, M. P., J. Am. Chem. Soc, 2006, 128, 14073-14080

ö "A Hierarchical Approach to All-Atom Protein Loop Prediction"

Jacobson, M. P.; Pincus, D. L.; Rapp, C. S.; Day, T. J. F.; Honig, B.; Shaw, D. E.; Friesner, R. A., Proteins: Structure, Function and Bioinformatics, 2004, 55, 351-367

ö "Computational Modeling of the Catalytic Reaction in Triosephosphate Isomerase"

Guallar, V.; Jacobson, M. P.; McDermott, A.; Friesner, R. A., J. Mol. Biol., 2004, 337, 227-239

ö "First-Shell Solvation of Ion Pairs: Correction of Systematic Errors in Implicit Solvent Models"

Yu, Z.; Jacobson, M. P.; Josovitz, J.; Rapp, C. S.; Friesner, R. A., J. Phys. Chem. B., 2004, 108, 6643-6654

ö "Complete Protein Structure Determination Using Backbone Residual Dipolar Couplings and Sidechain Rotamer Predication"

Andrec, M.; Harano, Y.; Jacobson, M. P.; Friesner, R. A; Levy, R. M., J. of Structural and Functional Genomics, 2002, 2, 103-111

ö "On the Role of Crystal Packing Forces in Determining Protein Sidechain Conformations"

Jacobson, M. P.; Friesner, R.A.; Xiang, Z.; Honig, B., J. Mol. Biol., 2002, 320, 597-608

ö "Force Field Validation Using Protein Side Chain Prediction"

Jacobson, M. P.; Kaminski, G. A.; Friesner, R. A; Rapp, C. S., J. Phys. Chem. B., 2002, 106, 11673-11680
Back To Top